›› 2016, Vol. 37 ›› Issue (5): 1380-1387.doi: 10.16285/j.rsm.2016.05.021

• 基础理论与实验研究 • 上一篇    下一篇

中主应力与大主应力方向角对软黏土排水变形特性影响

郭 林1,王钰轲2,王 军1,郑 敏3,伍婷玉4   

  1. 1.温州大学 建筑工程学院,浙江 温州 325035;2.河海大学 土木与交通学院,江苏 南京 210098; 3.江西理工大学 建筑与测绘工程学院,江西 赣州 341000;4.浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
  • 收稿日期:2015-06-03 出版日期:2016-05-10 发布日期:2018-06-09
  • 通讯作者: 王军,男,1980年生,博士,教授,主要从事土动力学方面的研究工作。E-mail: 397012380@qq.com E-mail: lingpray@126.com
  • 作者简介:郭林,男,1985年生,博士,讲师,主要从事土动力学方面的研究工作
  • 基金资助:

    国家自然科学基金(No. 51408441);浙江省自然科学基金(No. LQ14E080011);浙江省重点创新团队项目(No. 2011R50020)。

Influence of intermediate principal stress and major principal stress direction on the drainage-induced deformation of soft clay

GUO Lin1, WANG Yu-ke2, WANG Jun1, ZHENG Min3, WU Ting-yu4   

  1. 1. Architecture and Civil Engineering College, Wenzhou University, Wenzhou, Zhejiang 325035, China; 2. College of Civil & Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 3. School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China; 4. Research Center of Coastal and Urban Geotechnical Engineering of Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2015-06-03 Online:2016-05-10 Published:2018-06-09
  • Supported by:

    This work was supported by National Natural Science Foundation of China(51408441), Natural Science Foundation of Zhejiang Province(LQ14E080011) and the Program for Innovation Research Team of Zhejiang Province(2011R50020).

摘要: 为研究中主应力系数和大主应力方向角对各向异性软黏土变形特性的影响,利用GDS空心圆柱扭剪仪对温州原状软黏土进行了一系列不同中主应力系数和大主应力方向角的排水定向剪切试验。试验过程中在大主应力方向角和中主应力系数不变的条件下,逐渐增加剪应力直至试样破坏。分析了中主应力系数和大主应力方向角对温州原状土偏应力与大主应变关系、体应变、中主应变和小主应变与大主应变关系的影响。试验结果表明:试样的应力-应变关系在中主应力系数和大主应力方向角不同时表现出明显的各向异性。当中主应力系数为0.00和1.00时,大主应力方向角对应力-应变关系的影响较小;而当中主应力系数为0.50时,应力-应变关系中的割线剪切模量随大主应力方向角变化明显。当大主应力方向角为30°时,随着中主应力系数从0.00增加到0.50,中主应变由压缩状态变为拉伸状态;当大主应力方向角为45°时,随着中主应力系数从0.00增加到1.00,中主应变由压缩状态变为拉伸状态。

关键词: 中主应力系数, 主应力方向角, 各向异性, 原状软黏土, 排水条件

Abstract: In order to evaluate the influence of intermediate principal stress and major principal stress direction on the drainage-induced deformation of natural soft clay, a series of drained directional shear tests is carried out on Wenzhou natural soft clay with different intermediate principal stress coefficients and different major principal stress directional angles, using a GDS hollow cylinder torsional shear apparatus. During the tests, the shear stress is increased gradually until the specimens failed, while the major principal stress direction and the intermediate principal stress coefficient remain unchanged. The influences of intermediate principal stress coefficient and major principal stress direction are discussed on the relationship between the deviator stress and major principal strain, and the relationships between the major principal strain and the intermediate principal strain, minor principal strain and volumetric strain. It is found that the anisotropy expressed by the stress-strain relationship is affected by different intermediate principal stress coefficient and major principal stress direction. When the intermediate principal stress coefficient remains as 0.00 and 1.00, the influence of major principal stress direction on stress-strain relationship is insignificant. However, when the intermediate principal stress coefficient reaches 0.50, the secant modulus in stress-strain relationship is significantly influenced by major principal stress direction. When the major principal stress direction angle is 30°, the intermediate principal strain changes from compressive state to tensile state as the intermediate principal stress coefficient increase from 0.00 to 0.50. When the major principal stress direction angle is 45°, the intermediate principal strain changes from compressive state to tensile state when the intermediate principal stress coefficient increases from 0.00 to 1.00.

Key words: intermediate principal stress coefficient, major principal stress direction angle, anisotropy, intact soft clay, drained condition

中图分类号: 

  • TU 432

[1] 洪陈杰, 黄曼, 夏才初, 罗战友, 杜时贵, . 岩体结构面各向异性变异系数的尺寸效应研究[J]. 岩土力学, 2020, 41(6): 2098-2109.
[2] 王钰轲, 万永帅, 方宏远, 曾长女, 石明生, 吴迪, . 圆形应力路径下软黏土的动力特性试验研究[J]. 岩土力学, 2020, 41(5): 1643-1652.
[3] 徐杰, 周建, 罗凌晖, 余良贵, . 高岭-蒙脱混合黏土渗透各向异性模型研究[J]. 岩土力学, 2020, 41(2): 469-476.
[4] 范运辉, 朱其志, 倪涛, 张坤, 张振南, . 基于弹性张量离散化的脆延转变本构模型研究[J]. 岩土力学, 2019, 40(S1): 181-188.
[5] 彭守建, 岳雨晴, 刘义鑫, 许江, . 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291-3299.
[6] 尹晓萌, 晏鄂川, 王鲁男, 陈 利, . 各向异性片岩的微观组构信息定量 提取与断面形貌特征分析[J]. 岩土力学, 2019, 40(7): 2617-2627.
[7] 加瑞, 雷华阳, . 有明黏土各向异性固结特性的试验研究[J]. 岩土力学, 2019, 40(6): 2231-2238.
[8] 张坤勇, 臧振君, 李 威, 文德宝, Charkley Frederick Nai, . 土体三维卸荷弹塑性模型及其试验验证[J]. 岩土力学, 2019, 40(4): 1313-1323.
[9] 夏唐代, 郑晴晴, 陈秀良, . 基于累积动应力水平的间歇加载下超孔压预测[J]. 岩土力学, 2019, 40(4): 1483-1490.
[10] 张玉伟, 翁效林, 宋战平, 谢永利, . 考虑黄土结构性和各向异性的修正剑桥模型[J]. 岩土力学, 2019, 40(3): 1030-1038.
[11] 柯志强, 王环玲, 徐卫亚, 林志南, 吉 华, . 含横向节理的柱状节理岩体力学特性试验研究[J]. 岩土力学, 2019, 40(2): 660-667.
[12] 周建, 蔡露, 罗凌晖, 应宏伟, . 各向异性软土基坑抗隆起稳定极限平衡分析[J]. 岩土力学, 2019, 40(12): 4848-4856.
[13] 田雨, 姚仰平, 路德春, 杜修力, . 基于修正应力法的横观各向同性摩尔-库仑 准则及被动土压力公式[J]. 岩土力学, 2019, 40(10): 3945-3950.
[14] 高源, 刘海笑, 李洲, . 适用于饱和砂土循环动力分析边界面 塑性模型的显式积分算法[J]. 岩土力学, 2019, 40(10): 3951-3958.
[15] 唐洪祥, 韦文成. 耦合强度各向异性与应变软化的边坡稳定 有限元分析[J]. 岩土力学, 2019, 40(10): 4092-4100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!