›› 2016, Vol. 37 ›› Issue (5): 1497-1502.doi: 10.16285/j.rsm.2016.05.034

• 数值分析 • 上一篇    下一篇

基于格子Boltzmann方法土体CT扫描切片细观渗流场的数值模拟

崔冠哲,申林方,王志良,唐正光,徐则民   

  1. 昆明理工大学 建筑工程学院,云南 昆明 650500
  • 收稿日期:2014-05-22 出版日期:2016-05-10 发布日期:2018-06-09
  • 通讯作者: 申林方,女,1982年生,博士,讲师,主要从事岩土工程渗流方面的研究工作。E-mail: shenlinfang@kmust.edu.cn E-mail:cuiguanzhe@yeah.net
  • 作者简介:崔冠哲,男,1990年生,硕士研究生,主要从事地下建筑工程渗流方面的研究工作
  • 基金资助:

    昆明理工大学人才培养基金资助(No.KKSY201306023,No.KKSY201306142);国家自然科学基金-云南联合基金重点项目(No.U1033601)。

Numerical simulation of mesoscopic seepage field of soil CT scanned slice based on lattice Boltzmann method

CUI Guan-zhe, SHEN Lin-fang, WANG Zhi-liang, TANG Zheng-guang, XU Ze-min   

  1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • Received:2014-05-22 Online:2016-05-10 Published:2018-06-09
  • Supported by:

    This research was supported by the Personnel Training Foundation of Kunming University of Science and the Technology (KKSY201306023, KKSY201306142), the Key Program of Joint Fund of Yunnan Province-the National Natural Science Foundation of China (U1033601).

摘要: 基于格子Boltzmann方法,采用D2Q9基本模型,上、下边界采用非平衡外推格式,左、右不透水边界及土颗粒采用反弹格式设置边界条件,对土体细观渗流场进行数值模拟。首先将试验测得物理单位的数据转化为格子单位,然后用Matlab编制程序,对CT扫描切片进行处理,生成土体细观的数据结构,最后把格子单位表示的结果再转为物理单位,分析了渗流流速的变化规律,得到了整体和局部渗流场的分布情况。分析结果表明:(1)孔道处的流速U随着入渗时间的延长而逐渐达到一个相对稳定值,进而得到流体从开始入渗至稳定状态经历的准确时间T;(2)平均渗流速度由入口处沿y轴负方向逐渐递减,且小于入口处的平均渗流流速;(3)渗流量主要受控于通道的连通性、孔隙大小,最大渗流速度集中在通道的窄孔道处,封闭的孔道和孔隙渗流速度为0。格子Boltzmann方法能有效地对CT扫描得到的2D切片进行数值模拟,可以定量、准确地研究真实土体渗流场的变化机制。

关键词: 格子Boltzmann方法, 渗流场, 2D扫描切片, 数值模拟

Abstract: Mesoscopic seepage field of real soil is simulated based on lattice Boltzmann method. In this simulation, the basic model D2Q9 is used; and the inlet and outlet boundaries are constructed by setting the non-equilibrium extrapolation format. The soil particles boundary as well as left and right waterproof boundaries are set by the bounce-back format. At first, the data denoted by physical units from experiments are transformed into lattice units. According to data structure generated by CT scanned slices, the corresponding calculation program is applied to simulate mesoscopic seepage field of real soil. Finally, the results of lattice units are transform into physical units once again. The variation of seepage velocity is analyzed; and the whole and partial distributions of seepage field are obtained. The results show that: 1) Seepage velocity U finally reaches a relatively stable figure in pore channels over time. Accurate time T is obtained from the beginning of seepage to the steady-state of seepage. 2) The average seepage velocity gradually decreases along with the negative direction of y axis from the inlet boundary; and it is less than the average seepage velocity in inlet boundary. 3) The quantity of seepage is dominated by the connectivity and pore size of channels. The maximum seepage velocity is concentrated in a narrow channel. The velocity in closed pore channel and pore is zero. Lattice Boltzmann method is effective in simulating two dimensional CT scanned slice and can be used to research the mechanism of real seepage field quantitatively and accurately.

Key words: lattice Boltzmann method, seepage field, 2D scanned slice, numerical simulation

中图分类号: 

  • TU 411

[1] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[2] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[3] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[4] 胡盛斌, 杜国平, 徐国元, 周天忠, 钟有信, 石重庆, . 基于能量测量的声呐渗流矢量法及其应用[J]. 岩土力学, 2020, 41(6): 2143-2154.
[5] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[6] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[7] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[8] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[9] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[10] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[11] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[12] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[13] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[14] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[15] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!