›› 2016, Vol. 37 ›› Issue (S1): 371-380.doi: 10.16285/j.rsm.2016.S1.049

• 岩土工程研究 • 上一篇    下一篇

挤压地层双护盾TBM围岩变形及应力场特征研究

程建龙1,杨圣奇1, 2,潘玉丛3,田文岭1,赵维生1   

  1. 1. 中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116;2. 中国矿业大学 力学与建筑工程学院,江苏 徐州 221116; 3.中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2015-09-16 出版日期:2016-06-16 发布日期:2018-06-09
  • 通讯作者: 杨圣奇,男,1978生,博士,教授,博士生导师,主要从事深部岩石力学与地下工程方面的教学与研究工作。E-mail: yangsqi@hotmail.com
  • 作者简介:程建龙,男,1989生,博士研究生,主要从事深部复合地层力学行为以及TBM与围岩相互作用控制机制的研究。
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2014CB046905)。

Study of features of surrounding rock deformation and stress field in squeezing ground excavation by double shield TBM

CHENG Jian-long1, YANG Sheng-qi1, 2, PAN Yu-cong3, Tian Wen-Ling1, ZHAO Wei-sheng1   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2015-09-16 Online:2016-06-16 Published:2018-06-09
  • Supported by:
    This work was supported by the National Key Basic Research and Development Program (2014CB046905).

摘要: 为研究挤压地层双护盾隧道掘进机(TBM)作用下围岩变形及应力场特征,采用FLAC3D建立了完整模型,并详细阐述了隧道掘进机(TBM)施工过程中的模拟方法,重点分析了隧洞纵横断面内围岩位移场、应力场、塑性区特征。模拟结果表明,两腰下部范围内的围岩与TBM护盾发生接触并产生挤压,拱顶并未接触;受刀盘与护盾连接处的尺寸高差和前后护盾的锥度影响导致仰拱围岩内出现3次加卸载,仰拱内部环向应力和径向应力均大于拱顶和两腰,而且其主应力方向与径向线斜交,受扰动剧烈,但仰拱下方70°范围内的围岩基本处于弹性状态;横向断面内围岩塑性区自上而下逐渐减小,且距掌子面越远塑性区范围越大,但后盾塑性区范围变化不大。

关键词: 双护盾隧道掘进机, 不均匀间隙, 围岩变形特征, 应力场, 塑性区

Abstract: A complete 3D numerical simulation by using FLAC3D is developed to investigate the features of surrounding rock deformation and stress field in squeezing ground excavation by double shield tunnel boring machine(TBM). The TBM model was based on the real geometry and the nonuniform gap between the shield and the ground. A great emphasis is placed on the key steps to simulate TBM tunneling in accordance with the practical construction. In this paper, we mainly studied the characteristics of displacement field, stress field and the plastic zone on the cross section and the longitudinal section profile of the tunnel. The results obtained in numerical modeling indicate that the surrounding rock which located in the lower part of the wall is contact to the shield of TBM, whereas the crown is not. Three loading and unloading phenomena are observed in the surrounding rock of floor, which can be attributed to the impact of the geometry of size difference on the cutter head and shield and the conicity of the front shield and the rear shield. Moreover, the circumferential stress and the radial stress in floor is greater than the crown; and the wall and the orientation of major principal stress is severely perturbed and obliquely crossing the radial of the tunnel. But the ground on the lower part of 70° is in elasticity. The plastic zone outside the front shield gradually decreases from top to bottom on transverse section and increases with the greater distance away from the excavation face. But, it has no obvious change in ground outside the rear shield.

Key words: double shield tunnel boring machine, nonuniform gap, characters of ground deformation, stress field, plastic zone

中图分类号: 

  • U 452
[1] 刘泉声, 王栋, 朱元广, 杨战标, 伯音, . 支持向量回归算法在地应力场反演中的应用[J]. 岩土力学, 2020, 41(S1): 319-328.
[2] 尹光志, 鲁俊, 张东明, 李铭辉, 邓博知, 刘 超, . 真三轴应力条件下钻孔围岩塑性区及增透半径研究[J]. 岩土力学, 2019, 40(S1): 1-10.
[3] 冷伍明, 张期树, 徐方, 聂如松, 杨奇, 艾希, . 新型预应力路基坡面法向附加应力扩散规律分析[J]. 岩土力学, 2019, 40(10): 3987-4000.
[4] 刘阳辉, 胡向东, . 卸载状态下立井冻结壁的力学分析[J]. 岩土力学, 2018, 39(S2): 344-350.
[5] 王凤云,钱德玲. 基于切向应变软化的深埋圆形隧道围岩弹塑性分析[J]. , 2018, 39(9): 3313-3320.
[6] 陈 钒,吴建勋,任 松,欧阳汛,王 亮,范金洋,. 基于湿度应力场理论的硬石膏岩膨胀试验研究[J]. , 2018, 39(8): 2723-2731.
[7] 王 刚,徐 浩,武猛猛,王 锐,宋 相,周晓华,. 基于不同弹性本构方程的塑性区宽度及封孔长度研究[J]. , 2018, 39(7): 2599-2608.
[8] 王庆武,巨能攀,杜玲丽,黄 健,胡 勇,. 拉林铁路桑日至加查段三维地应力场反演分析[J]. , 2018, 39(4): 1450-1462.
[9] 刘飞跃,杨天鸿,张鹏海,周靖人,邓文学,侯宪港,赵永川, . 基于声发射的岩石破裂应力场动态反演[J]. , 2018, 39(4): 1517-1524.
[10] 王 瑞, 胡志平, 张亚国, 张 勋, 柴少波, . 黏弹性介质中平、柱面波动传播的 应力场及应用探讨[J]. 岩土力学, 2018, 39(12): 4665-4672.
[11] 蒙 伟,何 川,汪 波,张钧博,吴枋胤,夏舞阳. 基于侧压力系数的岩爆区初始地应力场二次反演分析[J]. , 2018, 39(11): 4191-4200.
[12] 张社荣,胡安奎,王 超,彭振辉, . 基于SLR-ANN的地应力场三维智能反演方法研究[J]. , 2017, 38(9): 2737-2745.
[13] 刘泉声,蒋亚龙,何 军. 非连续变形分析的精度改进方法及研究趋势[J]. , 2017, 38(6): 1746-171.
[14] 储昭飞,刘保国,刘开云,孙景来. 非静水应力场中圆形隧道衬砌与围岩间两种接触的黏弹性解析[J]. , 2017, 38(11): 3215-3224.
[15] 李 华 ,李崇标 ,刘云鹏 ,韩 刚 ,赵其华,. 中国西南深切峡谷岸坡地应力场基本特征[J]. , 2016, 37(S1): 482-488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!