›› 2016, Vol. 37 ›› Issue (S1): 509-520.doi: 10.16285/j.rsm.2016.S1.067

• 数值分析 • 上一篇    下一篇

控制应力路径散体材料真三轴试验强度特征的离散元模拟与细观机制分析

张 铎1,刘 洋1,吴顺川1, 2   

  1. 1. 北京科技大学 土木与环境工程学院,北京 100083;2. 北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083
  • 收稿日期:2015-12-07 出版日期:2016-06-16 发布日期:2018-06-09
  • 通讯作者: 刘洋,男,1979年生,博士,教授,主要从事岩土力学方面的教学与科研工作。E-mail: imaginationly@163.com E-mail: tmyxzd@hotmail.com
  • 作者简介:张铎,男,1991年生,博士研究生,主要从事土细观力学方面的研究与数值模拟。
  • 基金资助:
    国家自然科学基金(No. 51178044);北京市高校青年英才资助项目(No. YETP0340);北京市优秀人才培养计划(No. 2013D009006000005)。

Simulation of strength characteristics of granular materials in true triaxial test for different stress paths and its mesoscopic mechanism analysis

ZHANG Duo1, LIU Yang1, WU Shun-chuan1, 2   

  1. 1. Department of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. State Key Laboratory of High Efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2015-12-07 Online:2016-06-16 Published:2018-06-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51178044), the Beijing Higher Education Young Elite Teacher Project (YETP0340) and Beijing Excellent Talent Training Program (2013D009006000005).

摘要: 通过一系列真三轴离散元数值试验,模拟了不同应力路径下的等b试验中散体材料的强度特征。根据模拟结果详细地分析了三维应力条件下中主应力和应力路径对散体材料峰值强度的影响,研究了峰值摩擦角、峰值应力比的变化规律,并根据真应力的概念和组构张量的演化结果分析了散体材料的强度成因。研究表明,在不同类型的数值试验中峰值偏应力随b参数的变化规律不同,但采用初始围压归一化后的应力-应变曲线规律一致。峰值强度线的斜率只与b值有关而与应力路径无关,且随着b值的增加,峰值应力比qf /pf逐渐减小,数值模拟结果与室内试验结果吻合较好;随着应变的发展,数值试样的组构也随之发生变化,产生了明显的应力诱发各向异性;散体的强度为颗粒摩擦及材料各向异性共同作用的结果;理论上,组构比-应力比坐标系中破坏点位置仅取决于颗粒摩擦角 ,而数值模拟结果与理论值的差异源于颗粒间咬合和滚动摩擦的影响,其影响与颗粒表面摩擦系数有关,也受空间应力状态的影响。

关键词: 散体强度, 数值模拟, 离散元, 真三轴试验, 组构

Abstract: A series of numerical simulation of constant b cubic tests are conducted using discrete element method to study the strength characteristics of granular materials under different stress paths. The influences of intermediate principal stress and stress path on the peak strength of granular materials are analyzed in 3-dimensional stress state based on the simulation numerical results. The variation of peak friction angle and peak stress ratio is also studied. Contributions to strength of granular materials are analyzed based on the true stress concept and the development of fabric tensor. Research results show that the variations of peak deviatoric stress with Bishop parameter are different in different type cubic tests; however, the stress-strain curves normalized by the initial confining stress are identical. The slope of peak strength line independent of stress path is only related to parameter b; and the peak stress ratio qf /pf decreases with an increase of b. Simulation results are in agreement with laboratory observations. Meanwhile, stress-induced fabric anisotropy is developed with the increasing strain. The strength of granular materials is the joint action of friction of particles and anisotropic fabric induced by the applied stress. Theoretically, the location of failure point in fabric ratio-stress ratio coordinate system is only decided by the particle apparent friction angle. The deviation between numerical simulation and theoretical analysis is origin from the effect of interlocking and rolling friction between particles and this influence is related to both particle friction coefficient and stress state.

Key words: strength of granular materials, numerical simulation, discrete elements, true triaxial test, fabrics

中图分类号: 

  • O 242.21
[1] 薛亚东, 周杰, 赵丰, 李兴. 基于MatDEM的TBM滚刀破岩机理研究[J]. 岩土力学, 2020, 41(S1): 337-346.
[2] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[3] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[4] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[5] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[6] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[7] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[8] 吴祁新, 杨仲轩. 基于应变响应包络的颗粒材料增量力学行为研究[J]. 岩土力学, 2020, 41(3): 915-922.
[9] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[10] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[11] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[12] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[13] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[14] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[15] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!