›› 2016, Vol. 37 ›› Issue (S1): 557-562.doi: 10.16285/j.rsm.2016.S1.072

• 数值分析 • 上一篇    下一篇

液化流动条件下隧道结构动力分布场研究

左 熹1, 2,任 艳2,周恩全3   

  1. 1. 金陵科技学院 建筑工程学院,江苏 南京 211169;2. 南京工业大学 岩土工程研究所,江苏 南京 210009; 3. 江苏大学 土木工程与力学学院,江苏 镇江 212013
  • 收稿日期:2015-09-10 出版日期:2016-06-16 发布日期:2018-06-09
  • 作者简介:左熹,男,1982年生,博士后,副教授,主要从事土动力学与地下结构防灾减灾的研究
  • 基金资助:
    国家自然科学基金(No. 51408281);江苏省自然科学基金(No. BK20140108,No. BK20141090)。

Study of dynamic distribution field of tunnel structure under liquefied flow condition

ZUO Xi1, 2, REN Yan2, ZHOU En-quan3   

  1. 1. School of Architectural Engineering, Jinling Institute of Technology, Nanjing, Jiangsu 211169, China; 2. Institute of Geotechnical Engineering, Nanjing University of Technology, Nanjing, Jiangsu 210009, China; 3. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, Jiangsu 212013, China
  • Received:2015-09-10 Online:2016-06-16 Published:2018-06-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51408281) and the Natural Science Foundation of Jiangsu Province (BK20140108, BK20141090).

摘要: 将液化流动的土体视为流体,运用流体力学原理,基于矢量符号运算法进行液化场地的动力场分析,求解出动力场解析解。采用ABAQUS/CFD进行液化场地流体动力学有限元分析,根据流动基本控制方程,计算出动力场的数值解。分析结果表明,液化土体横向流动时,隧道结构周围的应力场既包括由表面压力引起的压力阻力,也包括由剪应力引起的摩擦阻力;隧道结构周围的液化土体流动速度很小,但在隧道结构下方存在流动速度加强区;理论计算的动力场解析解大于有限元计算的数值解,但总体的分布变化趋势基本一致;隧道结构附近的应力场变化较为密集,所受到的应力主要分布在液化土体流动的迎面位置。

关键词: 隧道结构, 液化场地, 速度场, 应力场

Abstract: According to the theory of fluid mechanics, considering liquefied soils as fluid, which analyzed the dynamic field by vector symbolic operation method and solved the analytical solution of dynamic field. It is used to analyze hydrodynamic characteristics of liquefied site by finite element method of ABAQUS/CFD; and the numerical solution of the dynamic field is calculated by the basic flow control equation. The results show that underground structure suffers pressure drag caused by surface pressure and frictional resistance caused by shear stress when liquefied soils flow in lateral. The flow velocity of liquefied soils around the tunnel is very small; but there is a velocity strengthening region below the tunnel structure. The analytical solution of the theoretical calculation is greater than the numerical solution of the finite element method; but the distribution of the overall trend is basically the same. The stress field near the tunnel structure is more intensive; and the stress distribution is mainly distributed in head position of liquefied soils.

Key words: tunnel structure, liquefied site, velocity field, stress field

中图分类号: 

  • U 452
[1] 刘泉声, 王栋, 朱元广, 杨战标, 伯音, . 支持向量回归算法在地应力场反演中的应用[J]. 岩土力学, 2020, 41(S1): 319-328.
[2] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[3] 冷伍明, 张期树, 徐方, 聂如松, 杨奇, 艾希, . 新型预应力路基坡面法向附加应力扩散规律分析[J]. 岩土力学, 2019, 40(10): 3987-4000.
[4] 刘阳辉, 胡向东, . 卸载状态下立井冻结壁的力学分析[J]. 岩土力学, 2018, 39(S2): 344-350.
[5] 陈 钒,吴建勋,任 松,欧阳汛,王 亮,范金洋,. 基于湿度应力场理论的硬石膏岩膨胀试验研究[J]. , 2018, 39(8): 2723-2731.
[6] 王庆武,巨能攀,杜玲丽,黄 健,胡 勇,. 拉林铁路桑日至加查段三维地应力场反演分析[J]. , 2018, 39(4): 1450-1462.
[7] 刘飞跃,杨天鸿,张鹏海,周靖人,邓文学,侯宪港,赵永川, . 基于声发射的岩石破裂应力场动态反演[J]. , 2018, 39(4): 1517-1524.
[8] 王 瑞, 胡志平, 张亚国, 张 勋, 柴少波, . 黏弹性介质中平、柱面波动传播的 应力场及应用探讨[J]. 岩土力学, 2018, 39(12): 4665-4672.
[9] 蒙 伟,何 川,汪 波,张钧博,吴枋胤,夏舞阳. 基于侧压力系数的岩爆区初始地应力场二次反演分析[J]. , 2018, 39(11): 4191-4200.
[10] 张社荣,胡安奎,王 超,彭振辉, . 基于SLR-ANN的地应力场三维智能反演方法研究[J]. , 2017, 38(9): 2737-2745.
[11] 刘泉声,蒋亚龙,何 军. 非连续变形分析的精度改进方法及研究趋势[J]. , 2017, 38(6): 1746-171.
[12] 唐 震,黄茂松,袁聚云, . 基于连续速度场的基坑抗隆起稳定性上限分析[J]. , 2017, 38(3): 833-839.
[13] 储昭飞,刘保国,刘开云,孙景来. 非静水应力场中圆形隧道衬砌与围岩间两种接触的黏弹性解析[J]. , 2017, 38(11): 3215-3224.
[14] 朱瑶宏,夏汉庸,胡志飞,. 软土地层盾构隧道结构整体抬升实践[J]. , 2016, 37(S2): 543-551.
[15] 程建龙,杨圣奇,潘玉丛,田文岭,赵维生,. 挤压地层双护盾TBM围岩变形及应力场特征研究[J]. , 2016, 37(S1): 371-380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!