›› 2016, Vol. 37 ›› Issue (9): 2610-2616.doi: 10.16285/j.rsm.2016.09.024

• 基础理论与实验研究 • 上一篇    下一篇

双轴应力下非贯通节理岩体压缩损伤本构模型

刘红岩1, 2,邢闯锋3,张力民4, 5   

  1. 1. 中国地质大学(北京) 工程技术学院,北京 100083;2. 西藏大学 工学院,西藏 拉萨 850000; 3. 中铁七局集团有限公司勘测设计院,河南 郑州 450016;4. 北京科技大学 土木工程与环境学院,北京 100083; 5. 河北承德钢铁公司,河北 承德 067002
  • 收稿日期:2014-10-10 出版日期:2016-09-12 发布日期:2018-06-09
  • 作者简介:刘红岩,男,1975年生,博士,教授,主要从事岩土工程方面的教学与科研工作
  • 基金资助:

    国家自然科学基金资助项目(No.41002113,No.41162009);中央高校基本科研业务费专项资金资助项目(No.2-9-2014-019)。

A biaxial compression damage constitutive model for rock mass with non-persistent joints

LIU Hong-yan1, 2, XING Chuang-feng3, ZHANG Li-min4, 5   

  1. 1. School of Engineering & Technology, China University of Geosciences (Beijing), Beijing 100083; 2. School of Engineering, Tibet University, Lhasa, Xizang 850000; 3. Engineering Survey & Design Company of China Railway Seventh Group Co. Ltd., Zhengzhou, Henan 450016; 4. School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083; 5. Hebei Chengde Iron and Steel Corporation, Chengde, Hebei 067002
  • Received:2014-10-10 Online:2016-09-12 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41002113, 41162009) and the Fundamental Research Founds for the Central University (2-9-2014-019).

摘要: 针对目前节理岩体损伤变量定义中大多仅考虑节理长度、倾角等几何性质,而未考虑节理抗剪强度等力学性质的不足,基于断裂力学中的由于单个节理存在引起的附加应变能增量与损伤力学中的损伤应变能释放量相关联的观点,推导出了在双轴应力下含单条非贯通闭合节理岩体的损伤变量计算公式,并根据断裂力学理论对双轴压缩荷载下的单个节理尖端应力强度因子计算方法进行了研究,得出了应力强度因子KⅠ、KⅡ的计算公式;同时考虑多节理间的相互作用,给出了单组单排及单组多排非贯通节理尖端应力强度因子计算公式,由此建立了相应的节理岩体双轴压缩损伤本构模型,并利用该模型进行了相应的算例分析。结果表明:对含单条非贯通闭合节理的岩体而言,当节理倾角小于其内摩擦角时,岩体强度与完整岩石相同,岩体损伤为0,而后随着节理倾角增加,岩体强度、损伤随节理倾角的变化分别呈开口向上及向下的抛物线,当节理倾角约为60°时,岩体损伤最大,强度最低。随着节理长度增加,岩体损伤增加,而随着节理内摩擦角的增加,岩体损伤则减小;对含单组单排非贯通闭合节理的岩体而言,当节理总长度一定时,随着单条节理长度的减小及节理条数的增加,岩体损伤则逐渐减小,但其减小幅度与节理条数并不呈线性关系。

关键词: 单组非贯通闭合节理岩体, 损伤变量, 应力强度因子, 双轴压缩, 损伤本构模型

Abstract: Currently, most definitions of the damage variable for jointed rock mass only use geometrical factors of joints such as the length and dip angle, but cannot consider joint shear strength. Due to this limitation, a new damage variable formulae is firstly deduced to calculate rock mass with a non-persistent closed joint, based on the connection between the increment of additional strain energy caused by the existence of one joint in fracture mechanics and the emission of damaged strain energy in damage mechanics. Secondly, the calculation method of the stress intensity factor (SIF) of a single joint tip under biaxial compression is studied according to fracture mechanics theory, and then the calculation SIF formulae of KⅠ and KⅡ are obtained. Thirdly, the calculation formulae of the tip SIF of a set of one or more-rowed joints are given by considering the interaction among the joints. Finally, a biaxial compression damage constitutive model for the jointed rock mass is developed, which is further employed to analyze an example. It is found that for rock mass with a single non-persistent closed joint, the strength of rock mass is the same as that of the intact rock, and the damage is 0 when the joint dip angle is less than its internal friction angle. Furthermore, with the increase in joint dip angle, the change laws of rock mass strength and the damage with the joint dip angle are parabola with the hatch up and down, respectively. The strength of rock mass is the lowest and its damage is the highest when the joint dip angle is about 60°. With the increase of joint length, the damage of rock mass increases; while with the increase of the internal friction angle of joint, the damage of rock mass decreases. For the rock mass with a set of one-rowed non-persistent closed joint, when the total length of the joint is the same, the damage of rock mass gradually decreases with the decrease of a single joint length and the increase of the joint number, however the relationship between the decrease amplitude and the joint number exhibits nonlinear response.

Key words: rock mass with a set of non-persistently closed joints, damage variable, stress intensity factor, biaxial compression, a damage constitutive model

中图分类号: 

  • TU 452

[1] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[2] 付龙龙, 周顺华, 田志尧, 田哲侃, . 双轴压缩条件下颗粒材料中力链的演化[J]. 岩土力学, 2019, 40(6): 2427-2434.
[3] 汪 杰, 宋卫东, 谭玉叶, 付建新, 曹 帅, . 水平分层胶结充填体损伤本构模型及强度准则[J]. 岩土力学, 2019, 40(5): 1731-1739.
[4] 杨石扣, 张继勋, 任旭华, . 基于改进数值流形法的接触裂纹问题研究[J]. 岩土力学, 2019, 40(5): 2016-2021.
[5] 王 宇, 艾 芊, 李建林, 邓华锋, . 考虑不同影响因素的砂岩损伤特征 及其卸荷破坏细观特性研究[J]. 岩土力学, 2019, 40(4): 1341-1350.
[6] 王登科, 孙刘涛, 魏建平, . 温度冲击下煤的微观结构变化与断裂机制[J]. 岩土力学, 2019, 40(2): 529-538.
[7] 宋洪强, 左建平, 陈 岩, 黎立云, 洪紫杰, . 基于岩石破坏全过程能量特征改进的能量跌落系数[J]. 岩土力学, 2019, 40(1): 91-98.
[8] 曾 寅, 刘建锋, 周志威, 吴 池, 李志成, . 盐岩单轴蠕变声发射特征及损伤演化研究[J]. 岩土力学, 2019, 40(1): 207-215.
[9] 方祥位,李晶鑫,李 捷,申春妮,. 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. , 2018, 39(S1): 1-8.
[10] 向 高,刘建锋,李天一,徐杨梦迪,邓朝福,吴 池,. 基于声发射的盐岩变形破坏过程的分形与损伤特征研究[J]. , 2018, 39(8): 2905-2912.
[11] 杨石扣,任旭华,张继勋,. 基于数值流形法的重力坝水力劈裂研究[J]. , 2018, 39(8): 3055-3060.
[12] 刘 超,张东明,尚德磊,赵宏刚,宋真龙,俞 欢, . 峰后围压卸载对原煤变形和渗透特性的影响[J]. , 2018, 39(6): 2017-2024.
[13] 王学滨,张 楠,潘一山,张博闻,杜亚志,. 单轴压缩黏性土剪切带相互作用及损伤试验研究[J]. , 2018, 39(4): 1168-1175.
[14] 李 清,于 强,徐文龙,万明华,张 正,吕 陈,王汉军,. 应变片法确定Ⅰ型裂纹动态应力强度因子试验研究[J]. , 2018, 39(4): 1211-1218.
[15] 罗先启,郑安兴,. 岩体裂隙模拟的扩展有限元法应用研究[J]. , 2018, 39(2): 728-734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!