›› 2016, Vol. 37 ›› Issue (9): 2679-2686.doi: 10.16285/j.rsm.2016.09.033

• 数值分析 • 上一篇    下一篇

基于颗粒离散元模型的不同加载速率下花岗岩数值试验研究

张学朋1, 2,蒋宇静1,王 刚1, 3,王建昌4,吴学震1, 2,张永政3   

  1. 1. 山东科技大学 矿山灾害预防控制省部共建国家重点实验室培育基地,山东 青岛 266590; 2. 长崎大学 工学部,日本 长崎 852-8521;3. 山东科技大学 山东省土木工程防灾减灾重点实验室,山东 青岛 266590; 4. 山东科技大学 矿业与安全工程学院,山东 青岛 266590
  • 收稿日期:2014-09-16 出版日期:2016-09-12 发布日期:2018-06-09
  • 通讯作者: 王刚,男,1976年生,博士,副教授,硕士生导师,主要从事岩石力学与工程方面的科研与教学工作。E-mail: wanggang1110@gmail.com E-mail: zhangxuepeng0722@126.com
  • 作者简介:张学朋,男,1989年生,博士研究生,主要从事岩体稳定性方面的研究工作。
  • 基金资助:

    国家自然科学基金项目(No.51279097,No.51479108,No.51379117);山东科技大学研究生创新基金(No.YC140357);中国博士后科学基金资助项目。

Numerical experiments on rate-dependent behaviors of granite based on particle discrete element model

ZHANG Xue-peng1, 2, JIANG Yu-jing1, WANG Gang1, 3, WANG Jian-chang4, WU Xue-zhen1, 2, ZHANG Yong-zheng3   

  1. 1. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. Faculty of Engineering, Nagasaki University, Nagasaki 852-8521, Japan; 3. Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 4. College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • Received:2014-09-16 Online:2016-09-12 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51279097, 51479108, 51379117), the Innovation Program for the Graduate Students in Shandong University of Science and Technology (YC140357) and the China Postdoctoral Science Foundation.

摘要: 不同加载速率条件下岩石的力学特性,对于其动载下破裂内在机制的研究具有积极的意义。基于颗粒流理论,通过黏结颗粒模型(bonded particle model,简称BPM)虚拟实现不同加载速率0.001~0.500 m/s下花岗岩单轴压缩和巴西劈裂试验,定量分析加载速率对应力-应变、破裂形态、应变能率及声发射的影响。结果表明:单轴抗压强度和抗拉强度及其对应峰值应变随加载速率增加而非线性增长;单轴压缩作用下,随加载速率增加,试样由单一斜截面破坏向多斜截面破坏转变,且主控裂隙带宽度急剧增大,由裂纹数量及水平向高应变率区域变化规律可明显看出,试样破坏程度随着加载速率增加而逐渐加剧;巴西劈裂作用下试样从一条主控裂隙向多条主控裂隙转变,且裂纹向圆盘试样两侧边缘部分延伸,破坏程度加剧;单轴压缩和巴西劈裂作用下,声发射事件及应变能率均随加载速率增加而呈现出非线性增长趋势。

关键词: 颗粒流理论, 岩石, 加载速率, 失效机制, 声发射

Abstract: Mechanical properties of rocks at different loading rates have positive effects on their inner failure mechanisms under dynamic loading conditions. Numerical simulations of uniaxial compression and Brazilian tests are conducted on granite specimens using the bonded particle model (BPM) in particle flow code (PFC2D). To quantify rate-dependent behavior of compression strength, tensile strength, failure modes, strain energy rate and acoustic emission, four different loading rates are chosen from 0.001 to 0.500 m/s. The uniaxial compression strength (UCS) and its corresponding strain, and the tensile strength and its corresponding strain increase nonlinearly with loading rate. The failure pattern and damage degree are also influenced by the loading rate. It is found that specimens under compressive loading have a single inclined section at a lower loading rate, while have several oblige section forms at a higher loading rate. In addition, crack numbers and high horizontal strain rate distributions show that the failure zone area and damage degree increase with increasing loading rate. In Brazilian tests, the failure modes change from one primary crack to several major cracks as loading rate increases. Cracks extend to the edge of circle specimens, and loading rate exacerbates damage degree. Additionally, acoustic emission counts and strain energy rates of specimens in both tests increase in nonlinear forms with increasing loading rate.

Key words: particle flow theory, rock, loading rate, failure mechanism, acoustic emission

中图分类号: 

  • TU 452

[1] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[2] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[3] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[4] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[5] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[6] 薛亚东, 周杰, 赵丰, 李兴. 基于MatDEM的TBM滚刀破岩机理研究[J]. 岩土力学, 2020, 41(S1): 337-346.
[7] 甘一雄, 吴顺川, 任义, 张光, . 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332.
[8] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[9] 邵长跃, 潘鹏志, 赵德才, 姚天波, 苗书婷, 郁培阳, . 流量对水力压裂破裂压力和增压率的影响研究[J]. 岩土力学, 2020, 41(7): 2411-2421.
[10] 陈炳瑞, 冯夏庭, 符启卿, 王搏, 朱新豪, 李涛, 陆菜平, 夏欢, . 综合集成高精度智能微震监测技术 及其在深部岩石工程中的应用[J]. 岩土力学, 2020, 41(7): 2422-2431.
[11] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[12] 王海军, 郁舒阳, 汤子璇, 汤雷, 任然, 徐进. 基于3D-ILC含60°内裂纹脆性球体 I-II-III型断裂研究[J]. 岩土力学, 2020, 41(5): 1573-1582.
[13] 张茂础, 盛谦, 崔臻, 马亚丽娜, 周光新. 岩石材料抗拉强度与劈裂节理面形貌的 加载速率效应研究[J]. 岩土力学, 2020, 41(4): 1169-1178.
[14] 王凯兴, 窦林名, 潘一山, OPARIN V N . 块系岩体非协调动力响应特征试验研究[J]. 岩土力学, 2020, 41(4): 1227-1234.
[15] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!