›› 2016, Vol. 37 ›› Issue (10): 2825-2832.doi: 10.16285/j.rsm.2016.10.012

• 基础理论与实验研究 • 上一篇    下一篇

软土狭长深基坑抗隆起破坏模式试验研究

张 飞1, 2,李镜培2, 3,孙长安3,沈广军1,李 飞1   

  1. 1. 盐城工学院 土木工程学院,江苏 盐城 224051;2. 同济大学 地下建筑与工程系,上海 200092; 3. 同济大学 岩土及地下工程教育部重点实验室,上海 200092
  • 收稿日期:2016-06-06 出版日期:2016-10-11 发布日期:2018-06-09
  • 作者简介:张飞,男,1982年生,博士,讲师,主要从事深基坑、桩基和地基处理等的研究。
  • 基金资助:

    国家自然科学基金青年基金项目(No. 41402270);江苏省科技计划前瞻性联合研究项目(No. BY2014108-26)。

Experimental study of basal heave failure mode of narrow-deep foundation pit in soft clay

ZHANG Fei1, 2, LI Jing-pei2, 3 , SUN Chang-an3, SHEN Guang-jun1, LI Fei1   

  1. 1. School of Civil Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 3. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2016-06-06 Online:2016-10-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41402270) and the Science and Technology Prospective Joint Research Project of Jiangsu Province (BY2014108-26).

摘要: 针对软土地区基坑底土层为饱和软黏土的情况,设计了狭长深基坑的抗隆起离心模型试验,分析不同开挖深度和水位条件下的基坑围护墙弯矩、土压力分布、水平位移以及基坑隆起稳定破坏机制。基于离心模型试验的基本参数和工况,建立了有限元数值模型,分析试验工况基坑的抗隆起稳定性与破坏状态,并进行对比验证。试验结果表明:随着开挖深度和坑外水位的增加,坑底软土层产生向上的隆起变形,当隆起变形较大时,围护墙由于坑内土体侧向约束的减弱,底部产生较大的向坑内的水平位移,同时导致支撑轴力增大,基坑最终表现出围护墙绕某道支撑点向坑内的转动踢脚破坏。数值计算结果表明:随着坑外水位的升高,基坑抗隆起稳定性安全系数逐渐减小,当发生抗隆起稳定破坏时,基坑底产生较大的隆起位移,破坏机制与离心模型试验结果相同。

关键词: 基坑, 抗隆起破坏, 离心模型试验, 地下水位, 强度折减法, 安全系数

Abstract: Centrifugal model test is designed to simulate basal heave failure of narrow-deep foundation pit in soft clay. The bending moment and horizontal displacement of retaining wall, the earth pressure distribution as well as basal failure mechanism of excavation at different groundwater levels are analyzed. Based on fundamental parameters and excavation procedures of the centrifugal model test, a finite element model is established to analyze the basal heave stability factors and failure modes of foundation pit, comparing with the centrifugal test results. The results of centrifugal model test show that, with the excavation depth increases and groundwater level rises, the bottom uplift and deformation increase. Horizontal displacement towards pit occurs at the bottom of retaining wall, because of the lateral restraint reduction and greater uplift, at the same time, the axis force of internal struts increases. Eventually, retaining wall rotates around a braced point of its own, resulting in a skirting failure. The results of numerical simulation show that, with the increase of groundwater level outside the pit, the safety factor of basal heave stability gradually reduces. When foundation pit collapses due to basal heave failure, the uplift displacement at bottom is greater. The basal failure mechanisms revealed by centrifugal model test and numerical simulation are similar.

Key words: foundation pit, basal heave failure, centrifugal model test, groundwater level, strength reduction method, factor of safety

中图分类号: 

  • TU 471.8

[1] 张坤勇, 张梦, 孙斌, 李福东, 简永洲, . 考虑时空效应的软土狭长型深基坑地连墙变形计算方法[J]. 岩土力学, 2023, 44(8): 2389-2399.
[2] 陈保国, 贾曾潘. 近接建筑荷载作用下阳角型深基坑最佳支撑位置[J]. 岩土力学, 2023, 44(8): 2400-2408.
[3] 张院生, 雷云超, 强小俊, 吴东东, 王东坡, 王计华, . 多排微型桩框架结构加固边坡离心模型试验研究[J]. 岩土力学, 2023, 44(7): 1983-1994.
[4] 曹嘉祺, 王洪新, 王平, 孙德安, . 基于荷载结构法和强度折减法的人防工程安全性评估方法[J]. 岩土力学, 2023, 44(7): 2105-2114.
[5] 彭文明, 张雪东, 夏勇, . 软弱覆盖层上土石坝动力离心模型试验研究[J]. 岩土力学, 2023, 44(6): 1771-1778.
[6] 崔瑜瑜, 吴立鹏, 沈兴华, 王兴召, 秦亚琼, 刘杰, 卢正, 吴磊, . 粉质黏土基坑卸荷隆起变形的简化计算方法[J]. 岩土力学, 2023, 44(5): 1425-1434.
[7] HANIFAH Hermil Rizki, RAHARDJO Paulus Pramono, LIM Aswin. 砂土地层圆形深基坑三维分析与测斜仪测量[J]. 岩土力学, 2023, 44(4): 1142-1152.
[8] 王锐松, 郭成超, 林沛元, 王复明, . 富水粉土基坑装配式可回收支护开挖响应分析[J]. 岩土力学, 2023, 44(3): 843-853.
[9] 肖国峰. 改进的岩质凸块的超载储备极限平衡法[J]. 岩土力学, 2023, 44(2): 425-432.
[10] 李瑛, 刘岸军, 刘兴旺. 考虑假想基础宽度的基坑抗隆起稳定性[J]. 岩土力学, 2023, 44(10): 2843-2850.
[11] 白时雨, 王文军, 谢新宇, 朱德良, . 考虑扰动影响的土体小应变硬化模型参数试验研究及其在基坑工程中的应用[J]. 岩土力学, 2023, 44(1): 206-216.
[12] 罗维平, 袁大军, 金大龙, 陆平, 陈健, 郭海鹏, . 富水砂层盾构开挖面支护压力与地层变形关系 离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354.
[13] 张文莲, 孙晓云, 陈勇, 金申熠, . 基于岩体抗压强度折减的边坡稳定性分析方法[J]. 岩土力学, 2022, 43(S2): 607-615.
[14] 刘波, 章定文, 李建春, . 基于多案例统计的基坑开挖引起侧方既有隧道 变形预测公式及其工程应用[J]. 岩土力学, 2022, 43(S1): 501-512.
[15] 吴佳明, 陈健, 陈国良, 钟宇, . 基于BIM技术的地铁基坑工程施工仿真模拟方法[J]. 岩土力学, 2022, 43(S1): 553-566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[3] 荆志东,刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. , 2010, 31(7): 2116 -2121 .
[4] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. , 2010, 31(S1): 121 -126 .
[5] 樊恒辉,高建恩,吴普特,娄宗科. 水泥基土壤固化剂固化土的物理化学作用[J]. , 2010, 31(12): 3741 -3745 .
[6] 张成平,张顶立,骆建军,王梦恕,吴介普. 地铁车站下穿既有线隧道施工中的远程监测系统[J]. , 2009, 30(6): 1861 -1866 .
[7] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[8] 张 渊,万志军,康建荣3,赵阳升. 温度、三轴应力条件下砂岩渗透率阶段特征分析[J]. , 2011, 32(3): 677 -683 .
[9] 张雪婵 ,龚晓南 ,尹序源 ,赵玉勃. 杭州庆春路过江隧道江南工作井监测分析[J]. , 2011, 32(S1): 488 -0494 .
[10] 席人双,陈从新,肖国锋,黄平路. 结构面对程潮铁矿东区地表及岩体移动变形的影响研究[J]. , 2011, 32(S2): 532 -538 .