›› 2016, Vol. 37 ›› Issue (S2): 16-24.doi: 10.16285/j.rsm.2016.S2.002

• 基础理论与实验研究 • 上一篇    下一篇

水平地震力作用下浅埋偏压隧道围岩压力的简化理论分析

张治国1, 2, 3, 4,徐晓洋2,赵其华4   

  1. 1. 重庆交通大学 山区桥梁与隧道工程国家重点实验室培育基地,重庆 400074;2. 上海理工大学 环境建筑学院,上海 200093; 3. 国土资源部 丘陵山地地质灾害防治重点实验室,福建 福州 350002; 4. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2016-01-14 出版日期:2016-11-11 发布日期:2018-06-09
  • 作者简介:张治国,男,1978年生,博士,博士后,副教授,硕士生导师,主要从事地下工程施工对周边环境影响控制方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51008188);上海自然科学基金(No. 15ZR1429400);山区桥梁与隧道工程国家重点实验室培育基地课题(No. CQSLBF-Y15-1);国土资源部丘陵山地地质灾害防治重点实验室课题(No. 2015k005);地质灾害防治与地质环境保护国家重点实验室课题(No. SKLGP2015K015)

Simple theoretical analysis of rock pressure for shallow unsymmetrical-loading tunnels considering horizontal earthquake action

ZHANG Zhi-guo1, 2, 3, 4, XU Xiao-yang2, ZHAO Qi-hua4   

  1. 1. State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 3. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources, Fuzhou, Fujian 350002, China; 4. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2016-01-14 Online:2016-11-11 Published:2018-06-09
  • Supported by:
    This work is supported by the Natural Science Foundation of China (51008188), Shanghai Natural Science Foundation (15ZR1429400), Program of State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering (CQSLBF-Y15-1), Open Project Program of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources(2015k005), and Open Project Program of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP2015K015).

摘要: 考虑到传统浅埋偏压隧道围岩压力的分析仅以计算摩擦角体现围岩材料特性,没有将内摩擦角和黏聚力作为独立参数分开研究,基于规范法,提出水平地震作用下独立考虑黏聚力的浅埋偏压隧道围岩压力的简化解析分析方法,获得隧道顶部竖直围岩压力、隧道两侧水平侧压力以及滑动面破裂角的理论表达式,并对影响顶部竖直围岩压力、水平侧压力和破裂角的因素进行了研究。结果表明,竖直围岩压力与滑裂面摩擦角、地面倾角呈正相关,与水平地震效应系数、滑裂面黏聚力呈负相关;滑裂面内摩擦角、黏聚力、地面倾角越大,破裂角越大,水平地震加速度系数越大,破裂角越小;水平侧压力随滑裂面内摩擦角和黏聚力的增大而减小,随水平地震效应系数和地面倾角的增大而增大。研究成果可为浅埋偏压隧道的围岩应力计算提供一定的理论依据。

关键词: 浅埋偏压隧道, 围岩压力, 黏聚力, 水平侧压力, 水平地震作用

Abstract: The previous analysis of the rock pressure of shallow bias tunnel is based on the particular friction angle to reflect the material characteristics of rock mass. However, the rock internal friction angle and cohesion are not as the independent parameters in their studies. Based on the standard method, a simplified theoretical analysis method for the rock pressure of shallow bias tunnel is proposed to consider the horizontal earthquake action and rock cohesion. The theoretical expressions of the vertical rock pressure at the location of tunnel top, the lateral pressure at the location of both sides of tunnel and the rupture angle of sliding surface are obtained. The factors affecting the top vertical and horizontal lateral pressure of surrounding rocks, and fracture angle are studied. The results show that the top vertical pressure of surrounding rocks is positively correlated with the friction angle of sliding surface and the slope angle, and negatively correlated with the level of seismic effect coefficient and slip surface. The greater the internal friction angle, the cohesion of sliding surface and the slope angle become, the greater the rupture angle becomes, while the greater the horizontal seismic acceleration coefficient becomes, the smaller the rupture angle becomes. The horizontal lateral pressure decreases with the increasing of the internal friction angle and cohesion, increases with the increasing of seismic effect coefficient and slope angle. The results can provide a theoretical basis for the calculation of surrounding rock stress of the shallow bias tunnel.

Key words: shallow bias tunnel, surrounding rock pressure, cohesion, horizontal lateral pressure, horizontal earthquake action

中图分类号: 

  • U 452
[1] 孙曦源, 衡朝阳, 周智, 张剑涛. 某超浅埋过街通道围岩压力的极限平衡求解方法[J]. 岩土力学, 2020, 41(S1): 312-318.
[2] 谢辉辉, 许振浩, 刘清秉, 胡桂阳, . 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(S1): 245-252.
[3] 吉恩跃, 陈生水, 傅中志, . 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4777-4782.
[4] 孙明社,马 涛,申志军,吴 旭,王梦恕,. 复合式衬砌结构中衬砌分担围岩压力比例的研究[J]. , 2018, 39(S1): 437-445.
[5] 孙德安,张乾越,张 龙,朱赞成,. 高庙子膨润土强度时效性试验研究[J]. , 2018, 39(4): 1191-1196.
[6] 韩同春, 谢灵翔, 刘 振, . 坑中坑条件下基坑有限土体的被动土压力计算[J]. 岩土力学, 2018, 39(12): 4404-4412.
[7] 刘 剑,崔 鹏, . 水土化学作用对土体黏聚力的影响 ——以蒙脱石-石英砂重塑土为例[J]. , 2017, 38(2): 419-427.
[8] 王 艳,傅俊醒,唐 强,胡安详,刘佳鑫,. 表面活性剂改性粉土抗剪强度特性的研究[J]. , 2016, 37(S1): 329-333.
[9] 梁 桥,杨小礼,张佳华,周文权, . 非均质土体中盾构隧道开挖面支护力上限分析[J]. , 2016, 37(9): 2585-2592.
[10] 刘仰鹏,贺少辉,汪大海,李丹煜. 超大跨度深埋地下结构围岩压力计算研究[J]. , 2015, 36(S2): 118-124.
[11] 孔令伟 ,臧 濛 ,郭爱国 ,拓勇飞,. 湛江强结构性黏土强度特性的应力路径效应[J]. , 2015, 36(S1): 19-24.
[12] 张俊儒 ,孙克国 ,卢 锋 ,郑宗溪 ,孙其清,. 不等跨连拱铁路隧道围岩压力分布及受力特征模型试验研究[J]. , 2015, 36(11): 3077-3084.
[13] 周 泓 ,张豫川 ,张 泽 ,冯文杰 ,周 波 ,武俊杰,. 冻融作用下冻结黄土黏聚力长期强度变化规律[J]. , 2014, 35(8): 2241-2246.
[14] 王志伟 ,乔春生 ,宋超业,. 上软下硬岩质地层浅埋大跨隧道松动压力计算[J]. , 2014, 35(8): 2342-2352.
[15] 刘成禹,何满潮,. 深埋隧道地质构造发育段围岩压力的特点[J]. , 2014, 35(4): 1101-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!