›› 2016, Vol. 37 ›› Issue (S2): 94-104.doi: 10.16285/j.rsm.2016.S2.011

• 基础理论与实验研究 • 上一篇    下一篇

软土地层高承台桥梁群桩基础横向承载特性研究

冯 君1, 2,张俊云1,朱 明1,江 南1   

  1. 1. 西南交通大学 土木工程学院,四川 成都 610031;2. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031
  • 收稿日期:2016-06-01 出版日期:2016-11-11 发布日期:2018-06-09
  • 通讯作者: 张俊云,男,1974年生,博士,副教授,主要从事土力学与基础工程方面研究工作。E-mail: zjy74@126.com E-mail:fengjun4316@163.com
  • 作者简介:冯君,男,1977年生,博士,副教授,主要从事岩土力学方面的教学与研究工作。
  • 基金资助:
    高速铁路线路工程教育部重点实验室资助(No. 20141028)

Characteristic study of horizontal bearing capacity and pile group effect coefficient of laterally loaded high pile group foundation for bridge in soft soil

FENG Jun1, 2, ZHANG Jun-yun1, ZHU Ming1, JIANG Nan1   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-Speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2016-06-01 Online:2016-11-11 Published:2018-06-09
  • Supported by:
    This work was supported by the Funded by Key Laboratory of High-Speed Railway Engineering, Ministry of Education (KKSY201306023).

摘要: 高承台群桩基础是高速铁路桥梁基础的一种常用形式,受到风、地震等荷载作用影响,常常需要承受较大的横向荷载。采用室内物理模型试验和三维有限元程序ABAQUS对软土地层中单桩、群桩的横向承载特性进行了研究,软土采用修正剑桥黏土本构模型,试验结果与有限元计算结果吻合较好。群桩研究方案包括了桩数的变化以及桩间距的变化。结果表明,群桩基础的基桩平均横向承载力(总承载力/桩数)较单桩基础显著增加,且水平荷载方向桩间距越大,其横向承载力越大;群桩基础基桩受力存在三维空间效应,不同位置基桩受力大小排序为角桩最大,其次为边桩,最小为中间桩,弯矩极值差异可达20%,群桩基础桩周土影响范围距外围基桩边缘净距离约为16D (D为桩径)。桩与桩相互影响效应对群桩水平承载不利,承台约束效应对水平承载有利。探讨了考虑上述两种效应的群桩效应系数计算方法,通过计算验证了该方法在软土地区高承台群桩基础横向承载力计算中的适用性。

关键词: 群桩基础, 水平承载力, 模型试验, 有限元分析

Abstract: Pile group foundations with high cap, as a common form of high-speed railway bridge foundation, are generally subjected to lateral loading due to wind action, earthquake, etc. In this paper, indoor physical model tests and three-dimensional finite element analyses using ABAQUS are both conducted to study the bearing capacity of laterally loaded single pile and pile foundation in soft soil layer. Soft soil is modelled by the modified Cam clay constitutive model in 3D FEM. The test results and finite element calculation results are in good agreement. The research of group pile are carried out by varying the piles number and pile spacing. The results show that the average lateral bearing capacity of pile foundation (total capacity divided by number of piles) is substantially higher than that of the single pile; and it also increases with the increase of the pile spacing in the direction of laterally load. Three- dimensional spatial effect is found in laterally loaded pile group foundation. The magnitude of internal force in pile varies with its spatial location. The corner pile has the maximum force, then the side pile, and the minimum force is found in the middle pile. The difference between the maximum and minimum bending moments is up to 20%. The range of surrounding soil influenced by pile group foundation is about 16 times pile diameter from the peripheral edge of the pile foundation. The pile and pile interaction effect of pile group is disadvantageous to its laterally loading capacity; and the cap constraint effect is favourable for the bearing capacity. The computing method for the effect coefficient of pile group is presented. The calculation results show that the presented computing method can be applied to the design of high cap pile group foundation in soft soil area in terms of laterally loading capacity.

Key words: pile group foundation, laterally loading capacity, model test, finite element analysis method(FEM)

中图分类号: 

  • TU 473
[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[3] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[4] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[5] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[6] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[7] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[8] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[9] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[10] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[11] 宋丁豹, 蒲诃夫, 陈保国, 孟庆达, . 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41(3): 823-830.
[12] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[13] 侯公羽, 胡涛, 李子祥, 谢冰冰, 肖海林, 周天赐, . 基于分布式光纤技术的采动影响下覆岩 变形演化规律试验研究[J]. 岩土力学, 2020, 41(3): 970-979.
[14] 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.
[15] 陈贺, 张玉芳, 张新民, 魏少伟, . 高压注浆钢花管微型桩抗滑特性 足尺模型试验研究[J]. 岩土力学, 2020, 41(2): 428-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!