›› 2016, Vol. 37 ›› Issue (S2): 175-186.doi: 10.16285/j.rsm.2016.S2.021

• 基础理论与实验研究 • 上一篇    下一篇

土体抗拉强度试验研究方法的进展

李昊达,唐朝生,徐其良,刘昌黎,冷 挺,施 斌   

  1. 南京大学 地球科学与工程学院,江苏 南京 210023
  • 收稿日期:2016-03-22 出版日期:2016-11-11 发布日期:2018-06-09
  • 通讯作者: 唐朝生,男,1980年生,博士,教授,主要从事工程地质和环境岩土工程方面的研究工作。E-mail: tangchaosheng@nju.edu.cn E-mail:workmail_NJU_LHD@163.com
  • 作者简介:李昊达,男,1994年生,本科,主要从事工程地质和环境岩土工程方面的研究工作。
  • 基金资助:
    基金项目优秀青年科学基金(No.41322019);国家自然学科基金(No.41572246);国家自然科学基金重点项目(No.41230636);江苏省“青蓝工程”(2014年);中央高校基本科研业务费专项资金(2015年)。

Advances in experimental testing methods of soil tensile strength

LI Hao-da, TANG Chao-sheng, XU Qi-liang, LIU Chang-li, LENG Ting, SHI Bin   

  1. School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
  • Received:2016-03-22 Online:2016-11-11 Published:2018-06-09
  • Supported by:
    This work was supported by the National Science Foundation for Excellent Young Scholars(41322019); National Natural Science Foundation of China (41572246); Key Project of National Natural Science Foundation of China (41230636); Qing Lan Project of Jiangsu Province(2014)and Fundamental Research Funds for the Central Universities(2015).

摘要: 理论上土体的抗拉强度与抗压和抗剪强度一样是描述土体力学性质的重要指标之一,也是研究土体张拉破坏特性的基础。由于土体抗拉强度在数值上相对较小,且难以准确测量,在岩土工程领域常常被忽视。随着工程中的张拉破坏问题越来越突出,土体抗拉强度特性引起许多学者的关注,相关研究成果也越来越多。文中对土体抗拉强度试验研究方法进行了系统的归纳和总结,对比分析了各种方法的优缺点,认识到,(1)土体抗拉强度试验方法总体上可分为直接法和间接法两大类,直接法是在试样两端直接施加拉力直到试样发生张拉破坏,根据破坏时的最大拉力及对应的破裂面面积计算出土体的抗拉强度。间接法主要通过一些理论假设,把压应力转换成相应的拉应力并基于一些理论公式计算土体抗拉强度;(2)按试样受力条件,直接法可分为单轴拉伸和三轴拉伸,一般都需要开发专门的拉伸试验设备,以实现拉力荷载的施加及其在试样内的有效传递。常用的方式有粘结、锚固、模具夹持及摩擦力传递等,都各有优缺点,但模具夹持法相对而言更具操作性。间接法中比较有代表性的有巴西劈裂试验、土梁弯曲试验和轴向压裂试验等,一般较适应于刚度较大的土体如化学固化土。最后,笔者提出了今后该课题的研究重点,包括制定土体抗拉强度试验方法规范及标准,研发简单易操作的土体拉伸试验设备,拉伸试验过程中土吸力的测量及控制方法,土体拉伸过程中应变场的准确获取方法及土体张拉特性的数值模拟研究等。

关键词: 抗拉强度, 试验方法, 单轴拉伸, 三轴拉伸, 土梁弯曲, 轴向压裂试验, 径向压裂试验, 巴西劈裂

Abstract: Tensile strength, like compressive strength and shearing strength, is one of the most important engineering indexes to describe the properties of soil. Tensile strength is also the base of studying the characteristics of soil tensile damage; but tensile strength is always neglected in geotechnical engineering practice because it is relatively small on the value and hard to measure. With tension failure of the project more and more problems, the tensile strength properties of the soil caused by the concern of many scholars, research results are more and more. The paper on soil tensile strength test conducted systematic research methods and summarized, comparative analysis of the advantages and disadvantages of every method; it is recognized (1) The methods used in tensile strength tests can be cataloged into two classes of direct tensile test and indirect tensile test generally; in direct tensile test, tension force is directly applied on both ends of the specimen until the fracture occurs; then, tensile strength can be calculated with the maximum tension and fracture surface area; indirect method is mainly through a number of theoretical assumptions, the compressive stress is converted into the corresponding tensile stress and tensile strength of soil calculated based on some theoretical formula. (2) According to different stress conditions, the direct tensile test can be divided into uniaxial tensile test and triaxial tensile test. Generally speaking, both these two methods need special test apparatus to apply tensile load and realize its effective transfer within the specimen. Different designs are used in the apparatuses, such as glue, anchoring, mould and friction. Every design has its advantages and disadvantages; but mould is convenient for use comparatively; indirect tensile test mainly includes the split tensile test (Brazilian test), soil beam bending test and the axial fracturing test. These methods are adapted to stiff soil better, like chemical reinforced soil. Finally, some important research topics that should be well investigated in the future are proposed, including the establishment of standard tensile strength testing methods, developing simple soil tensile test apparatus, finding the method to measure and control the suction, acquiring the strain field information and numerical simulation research during the test.

Key words: tensile strength, test methods, uniaxial tensile, triaxial tensile, soil beam bending, axial fracturing test, Brazilian splitting test

中图分类号: 

  • TU 443
[1] 张茂础, 盛谦, 崔臻, 马亚丽娜, 周光新. 岩石材料抗拉强度与劈裂节理面形貌的 加载速率效应研究[J]. 岩土力学, 2020, 41(4): 1169-1178.
[2] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
[3] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[4] 吉恩跃, 陈生水, 傅中志, . 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4777-4782.
[5] 高桂云,王成虎,王春权,. 双圆环直接拉伸试验试样最优尺寸范围研究[J]. , 2018, 39(S1): 191-202.
[6] 马春德,郭春志,潘素平,周亚楠,. 岩石三轴拉伸试验装置研制及其应用[J]. , 2018, 39(S1): 537-543.
[7] 李志刚,徐光黎,黄 鹏,赵 欣,伏永朋,苏 昌,. 粉砂质板岩力学特性及各向异性特性[J]. , 2018, 39(5): 1737-1746.
[8] 刘跃东,林 健,冯彦军,司林坡,. 基于水压致裂法的岩石抗拉强度研究[J]. , 2018, 39(5): 1781-1788.
[9] 腾俊洋,唐建新,张 闯, . 层状含水页岩的抗拉强度特性试验研究[J]. , 2018, 39(4): 1317-1326.
[10] 滕尚永, 杨圣奇, 黄彦华, 田文岭, . 裂隙充填影响巴西圆盘抗拉力学特性试验研究[J]. 岩土力学, 2018, 39(12): 4493-4507.
[11] 吴秋红,赵伏军,李夕兵,王世鸣,王 斌,周志华,. 径向压缩下圆环砂岩样的力学特性研究[J]. , 2018, 39(11): 3969-3975.
[12] 骆 晗,李荣建,刘军定,霍旭挺,张 真,孙 萍,. 基于联合强度的黄土主动土压力公式与计算比较[J]. , 2017, 38(7): 2080-2086.
[13] 崔 猛,韩尚宇,洪宝宁,. 新型土工单轴拉伸试验装置的研制及应用[J]. , 2017, 38(6): 1832-1840.
[14] 郭 翔,王学滨,白雪元,王春伟,齐大雷,. 加载方式及抗拉强度对巴西圆盘试验影响的连续-非连续方法数值模拟[J]. , 2017, 38(1): 214-220.
[15] 邓华锋,张小景,张恒宾,王晨玺杰,方景成,肖 瑶. 巴西劈裂法在层状岩体抗拉强度测试中的分析与讨论[J]. , 2016, 37(S2): 309-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!