›› 2016, Vol. 37 ›› Issue (S2): 329-336.doi: 10.16285/j.rsm.2016.S2.041

• 基础理论与实验研究 • 上一篇    下一篇

大埋深高地应力关山隧道围岩变形破坏分析

梁 宁1, 2,伍法权3,王云峰4,包 含1, 2   

  1. 1. 中国科学院大学,北京 100049;2. 中国科学院地质与地球物理研究所 中国科学院页岩气与地质工程重点实验室,北京 100029; 3. 绍兴文理学院 土木工程学院,浙江 绍兴 312000;4. 天平铁路有限公司,甘肃 天水 741020
  • 收稿日期:2016-06-09 出版日期:2016-11-11 发布日期:2018-06-09
  • 通讯作者: 伍法权,男,1955年生,博士,研究员,主要从事岩土工程方面的研究工作。Email: wufaquan@mail.iggcas.ac.cn E-mail: liangning320@qq.com
  • 作者简介:梁宁,男,1983年生,博士研究生,主要从事岩体工程方面的研究工作
  • 基金资助:
    国家自然科学基金(No. 41030749)

Analysis of deformation and failure of rock mass of deep Guanshan tunnel under high in situ stress

LIANG Ning1, 2, WU Fa-quan3, WANG Yun-feng4, BAO Han1, 2   

  1. 1.University of Chinese Academy of Sciences, Beijing 100049, China; 2. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 3. College of Civil Engineering,Shaoxing University, Shaoxing, Zhejiang 312000, China; 4. Tianping Railway Corporation Limited, Tianshui, Gansu 741020, China
  • Received:2016-06-09 Online:2016-11-11 Published:2018-06-09
  • Supported by:
    This work was supported by the State Key Program of National Natural Science Foundation of China (41030749).

摘要: 甘肃省关山隧道是一条受高地应力影响的大埋深硬脆性闪长岩铁路隧道,位于青藏高原东北缘,构造活跃,运动速率较大,且方向变化显著的六盘山挤压隆升构造区。在隧道开挖过程中围岩变形破坏现象明显,围岩等级低于前期岩体质量分级,表现出强烈的岩体质量劣化和各向异性。针对该问题,除了采用矿物成分和微结构分析寻找原因,还通过现场结构面统计分析对围岩质量劣化和各向异性进行描述,同时运用自行研发的钻孔电视进一步分析开挖前后一定时间间隔内围岩的渐进式变形和破坏。钻孔电视试验结果表明,尽管闪长岩作为一种硬脆性岩体,单轴抗压强度(UCS)高于现场地应力值,但其变形和破坏却普遍发生,开挖过程中新生裂隙迅速发育,原先在高地应力下闭合的裂隙也会重新张开和发展,围岩劣化,稳定性降低。为了进一步分析围岩的变形破坏过程,设计了变压力大小和方向的单轴抗压试验,试验中闪长岩的单轴压力值低于单轴抗压强度,试验结果与钻孔电视试验观测结果吻合,证明了在开挖引起的地应力剧烈变化条件下硬脆性闪长岩结构劣化,存在变形破坏的可能性。在大埋深高地应力条件下,除了岩体的各向异性,地应力的变化也是硬脆性围岩稳定性的重要考量因素。

关键词: 深部硬脆岩体, 变形破坏, 高地应力, 闪长岩

Abstract: Guanshan railway tunnel, located in Gansu Province, China, is a deep tunnel in hard and brittle diorite rock mass under high in situ stress. Meanwhile, this tunnel is also located in the Liupan Mountain, which is an active tectonic region of the compression uplift with a high horizontal movement rate and significantly changes of movement direction on the northeastern margin of Qinghai-Tibet block. On the contrary of the good rock mass classification predicted in investigation stage, the real situation after excavation shows a great change of rock mass parameters and structure, revealing not only the degradation of rock mass quality also the significant anisotropy of rock mass. The degradation and anisotropy of rock mass is described and analyzed based on the statistic analysis of the rock structural plane in field. Meanwhile, self-developed borehole camera is adopted to further observe the progressive deformation and failure of rock mass in an interval after excavation. As one of the hard and brittle plutonite, the uniaxial compressive strength (UCS) of diorite is a relatively high index on investigation stage, which is obviously larger than the in situ stress. However, the deformation and failure of diorite rock mass happened prevailingly. As the evidence obtained by borehole camera, the micro fracture or closed rock structural plane under high in situ stress will re-open and develop quickly after the excavation, which degraded the stability and quality of rock mass structure. To figure out the deformation and failure process, an angle rotation of uniaxial compressive test is designed. The uniaxial pressure is lower than the uniaxial compressive strength of diorite. This test has good agreement with the borehole camera test results, fully presents degradation of rock mass structure, induced by stress field change after excavation and proves the feasibility of the progressive deformation and failure process of hard and brittle diorite rock mass during the strongly stress field change after excavation. Besides anisotropy of rock mass, stress field change is always a significant consideration factor in deep excavation project under high in situ stress.

Key words: deep hard and brittle rock mass, deformation and failure, high in-situ stress, diorite

中图分类号: 

  • TU 452
[1] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[2] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[3] 张传庆, 刘振江, 张春生, 周辉, 高阳, 侯靖, . 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496.
[4] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[5] 向 高,刘建锋,李天一,徐杨梦迪,邓朝福,吴 池,. 基于声发射的盐岩变形破坏过程的分形与损伤特征研究[J]. , 2018, 39(8): 2905-2912.
[6] 黄俊杰,王 薇,苏 谦,李 婷,王 迅,. 素混凝土桩复合地基支承路堤变形破坏模式[J]. , 2018, 39(5): 1653-1661.
[7] 张建海,王仁坤,周 钟,郑 路,张 茹,谢和平, . 高地应力地下厂房预应力锚索预紧系数[J]. , 2018, 39(3): 1002-1008.
[8] 李 韬,徐奴文,戴 峰,李天斌,樊义林,李 彪,. 白鹤滩水电站左岸坝肩开挖边坡稳定性分析[J]. , 2018, 39(2): 665-674.
[9] 宋许根,陈从新,夏开宗,陈龙龙,付 华,邓洋洋,杜根明,. 竖井变形破坏机制与继续使用可行性探究[J]. , 2017, 38(S1): 331-342.
[10] 梁敬轩,胡卸文,叶正晖,罗 刚,刁仁辉,马洪生,. 大型堆积体边坡基-覆界面及坡面动态响应特性试验研究[J]. , 2017, 38(8): 2249-2260.
[11] 范 勇,卢文波 ,周宜红,冷振东,严 鹏,. 一种高地应力条件下爆破开挖诱发振动峰值的预测模型[J]. , 2017, 38(4): 1082-1088.
[12] 陈登红,华心祝,段亚伟,成世兴,. 深部大变形回采巷道围岩拉压分区变形破坏的模拟研究[J]. , 2016, 37(9): 2654-2662.
[13] 严 鹏 ,赵振国 ,卢文波 ,陈 明 ,周创兵 , . 深部岩体地应力瞬态卸载诱发振动效应的影响因素[J]. , 2016, 37(2): 545-553.
[14] 胡少华, 章 光, 张 淼 ,姜秀玲,陈益峰,. 热处理北山花岗岩变形特性试验与损伤力学分析[J]. , 2016, 37(12): 3427-3436.
[15] 马腾飞,李树忱,李术才,徐咸辉,张露晨,平 洋. 不同倾角多层节理深部岩体开挖变形破坏规律模型试验研究[J]. , 2016, 37(10): 2899-2908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!