›› 2016, Vol. 37 ›› Issue (11): 3057-3064.doi: 10.16285/j.rsm.2016.11.003

• 基础理论与实验研究 • 上一篇    下一篇

活性MgO碳化固化土的抗硫酸盐侵蚀性研究

刘松玉1, 2,郑 旭1, 2,蔡光华1, 2,曹菁菁1, 2   

  1. 1.东南大学 岩土工程研究所,江苏 南京 210096;2.东南大学 江苏省城市地下工程与环境安全重点实验室,江苏 南京 210096
  • 收稿日期:2014-12-22 出版日期:2016-11-11 发布日期:2018-06-09
  • 作者简介:刘松玉,男,1963年生,教授,博士生导师,主要从事土力学理论、桩基工程、特殊地基和路基稳定、地下空间技术、原位测试技术等方面的研究工作。
  • 基金资助:

    国家自然科学基金重点项目(No. 41330641);国家自然科学基金项目(No. 51279032);“中央高校基本科研业务费专项资金资助”和“江苏省普通高校研究生科研创新计划资助项目”(No. KYLX_0147)。

Study of resistance to sulfate attack of carbonated reactive MgO-stabilized soils

LIU Song-yu1, 2, ZHENG Xu1, 2, CAI Guang-hua1, 2, CAO Jing-jing1, 2   

  1. 1. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China 2. Jiangsu Key Laboratory of Urban Underground Engineering & Environmental Safety, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2014-12-22 Online:2016-11-11 Published:2018-06-09
  • Supported by:

    This work was supported by the Major Program of National Natural Science Foundation of China (41330641), the National Natural Science Foundation of China (51279032), and the Central University Special Funding for Basic Scientific Research Business Expenses and Graduate Student Scientific Research Innovation Program of Jiangsu Province (KYLX_0147).

摘要: 既有研究表明,活性MgO固化土经CO2碳化几小时后其强度能达到甚至超过28 d的水泥固化土强度,碳化反应生成镁的碳酸化合物能有效降低固化土的含水率和孔隙率,提高土颗粒胶结能力。通过室内试验进一步研究碳化固化土的抗硫酸盐侵蚀特性。采用硫酸钠溶液、硫酸镁溶液浸泡碳化固化土,对浸泡不同龄期后的碳化固化土进行无侧限抗压强度试验和微观测试(XRD,SEM和MIP),并与硫酸盐侵蚀后的水泥固化土进行试验对比。结果表明:活性MgO固化粉土碳化3 h,试样的无侧限抗压强度可达5 MPa左右,经硫酸盐溶液浸泡28 d后其强度基本保持不变,试样质量变化也不大;而水泥土试样的早期强度(7 d)则有一定增长,随龄期增长,强度大大降低,质量则明显增长。通过对硫酸盐侵蚀前后的碳化土的微观机制分析,发现活性MgO碳化固化土中的镁碳酸化合物的化学成分并未发生明显变化,孔隙结构也未明显改变,从而保证其强度稳定。因此,活性MgO固化粉土碳化后具有比水泥固化土更强的抗硫酸盐侵蚀能力。

关键词: 土体固化, 活性MgO, 碳化, 水泥土, 硫酸盐

Abstract: It has been shown that reactive MgO-stabilized soils carbonated by CO2 after a few hours have almost the same or even more strength of 28-day curing cemented soils. The predominant products of the carbonated reactive MgO-stabilized soils are the hydrated magnesium carbonates, which can significantly reduce the water content and porosity of stabilized soils, and increase the binding strength between soil particles. The sulfate resistance of carbonated reactive MgO-stabilized soils is further studied through laboratory tests. The sodium and magnesium sulfate solutions are selected respectively for soaking the carbonated soil samples and contrasting to cemented soil samples. After soaking different days, the unconfined compressive strength of these samples are measured, and then the microstructure characteristics are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Mercury intrusion porosimetry (MIP) tests. The results show that the unconfined compressive strength of the MgO-stabilized soils can reach about 5 MPa after the carbonation of 3 hours. It remains almost the same strength and mass after the sulfate attack of 28 days, while the strength of the cemented soil decreases greatly after sulfate attack with its mass significantly increasing, though it increases slightly at the shorter attacking time (7 days). The microstructure analysis reveals that the hydrated magnesium carbonates generated by carbonation and its pore structure do not change significantly after the sulfate attack, thus ensuring its stable strength. Therefore, it can be concluded that the carbonated reactive MgO-stabilized soil has better resistance to the sulfate attack compared to the cemented soil.

Key words: soil stabilization, reactive MgO, carbonation, cemented soil, sulfate

中图分类号: 

  • TU 472

[1] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[2] 王东星, 肖杰, 李丽华, 肖衡林, . 基于碳化-固化技术的武汉东湖淤泥 耐久性演变微观机制[J]. 岩土力学, 2019, 40(8): 3045-3053.
[3] 王东星, 肖 杰, 肖衡林, 马 强, . 武汉东湖淤泥碳化-固化试验研究[J]. 岩土力学, 2019, 40(5): 1805-1812.
[4] 王东星, 王宏伟, 邹维列, 徐学勇, . 活性MgO−粉煤灰固化淤泥耐久性研究[J]. 岩土力学, 2019, 40(12): 4675-4684.
[5] 陈 军, 梁文鹏, 应宏伟, . 大直径水泥土锚索合理间距的试验与数值研究[J]. 岩土力学, 2018, 39(S2): 374-380.
[6] 刘松玉,曹菁菁,蔡光华, . 活性氧化镁碳化固化粉质黏土微观机制[J]. , 2018, 39(5): 1543-1552.
[7] 曹亚鹏,文 桃,米海珍,周凤玺,杨 鹏,. 硫酸盐渍土含水率单次递减条件下的盐胀特性[J]. , 2018, 39(3): 881-888.
[8] 马芹永,高常辉,. 冲击荷载下玄武岩纤维水泥土吸能及分形特征[J]. , 2018, 39(11): 3921-3928.
[9] 岳浩淼,黄建明,文 桃,米海珍,. 换填覆重法处理砂类硫酸盐渍土地基的室内模拟试验[J]. , 2017, 38(2): 471-478.
[10] 许胜才,张信贵,马福荣,陈子兴, . 水泥土桩加固边坡变形破坏特性及模型试验分析[J]. , 2017, 38(11): 3187-3196.
[11] 杨 鹏,朱彦鹏,曹亚鹏,米海珍,. 含水率单次递减条件下粗颗粒硫酸盐渍土盐胀的室内模拟试验[J]. , 2017, 38(10): 2909-2915.
[12] 周佳锦,龚晓南,王奎华,张日红,王孟波,. 层状地基中静钻根植竹节桩单桩沉降计算[J]. , 2017, 38(1): 109-116.
[13] 胡秀青,董全杨,吕程伟,王 军,庄心善,. 水泥土搅拌桩软土地基土体动力特性的共振柱试验研究[J]. , 2016, 37(S2): 343-348.
[14] 鹿 群,郭少龙,王闵闵,高 萌,. 纤维水泥土力学性能的试验研究[J]. , 2016, 37(S2): 421-426.
[15] 徐 平,张天航,孟芳芳,. 工字钢水泥土搅拌墙基坑支护的力学性能研究[J]. , 2016, 37(S2): 769-774.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!