›› 2017, Vol. 38 ›› Issue (1): 133-140.doi: 10.16285/j.rsm.2017.01.017

• 基础理论与实验研究 • 上一篇    下一篇

主应力轴变化下非共轴对砂土剪胀特性影响

熊 焕1,郭 林2,蔡袁强1, 2   

  1. 1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058;2. 温州大学 建筑与土木工程学院,浙江 温州 325035
  • 收稿日期:2015-01-02 出版日期:2017-01-11 发布日期:2018-06-05
  • 作者简介:熊焕,男,1988年生,博士,主要从事土动力学方面的研究工作。
  • 基金资助:

    国家杰出青年科学基金(No. 51025827);国家自然科学基金项目(No. 51408441);浙江省自然科学基金项目(No. LQ14E080011)。

Effect of non-coaxiality on dilatancy of sand involving principal stress axes rotation

XIONG Huan1, GUO Lin2, CAI Yuan-qiang1, 2   

  1. 1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Architecture and Civil Engineering College, Wenzhou University, Wenzhou, Zhejiang 325035, China
  • Received:2015-01-02 Online:2017-01-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Science Foundation for Distinguished Young Scholars(51025827), the National Natural Science Foundation of China (51408441) and the Natural Science Foundation of Zhejiang Province in China (LQ14E080011).

摘要: 传统塑性剪胀模型在描述应力比和塑性应变增量关系时都是基于共轴塑性流动法则,从而认为土体的剪胀性仅与应力比有关。大量试验结果表明,在涉及主应力轴变化的复杂应力条件下塑性流动过程中应力-应变是非共轴的,因而在分析砂土剪胀特性时非共轴是不可忽视的因素。为了研究主应力轴变化的复杂应力条件下非共轴对砂土剪胀特性的影响,利用空心圆柱仪对饱和砂土进行了一系列定轴剪切试验、纯主应力轴旋转试验以及组合加载试验。试验结果表明,不同应力路径下应力-应变非共轴都会引起剪胀曲线偏离Rowe直线,通过Gutiereez提出的考虑非共轴因子的修正剪胀方程可以修正非共轴引起的偏差,从而使得Rowe剪胀方程适用于涉及主应力轴旋转等更加复杂的加载条件。

关键词: 剪胀性, 非共轴, 主应力轴变化, 应力比

Abstract: Traditional plastic dilatancy models are based on coaxial plastic flow rule when describing relations between the stress ratio and plastic strain increment, in which stress-dilatancy behavior of soil only depends on stress ratio. A large number of test results show that the stress and strain are non-coaxial during plastic flow under complex stress conditions involving principal stress rotation; so the non-coaxiality cannot be ignored when analyzing stress-dilatancy behavior of soil. In order to investigate the effects of non-coaxiality on the stress-dilatancy behavior of sand under complex stress conditions involving principal stress axes rotation, a series of fixed principal stress axes shear tests and pure principal stress rotation tests and combined loading tests are conducted on the saturated sand using a hollow cylinder apparatus. The test results indicate that the stress-strain non-coaxiality would result in the deviation between the stress-dilatancy curves and Rowe-line under different stress paths, which can be modified through the Gutiereez’s modified dilatancy equation by introducing a non-coaxiality factor. In this way, Rowe’s stress-dilatancy equation can be made more applicable to loadings involving principal axes stress rotation.

Key words: stress-dilatancy, non-coaxiality, principal stress axes rotation, stress ratio

中图分类号: 

  • TU 411

[1] 袁庆盟, 孔亮, 赵亚鹏, . 考虑水合物填充和胶结效应的深海能源土 弹塑性本构模型[J]. 岩土力学, 2020, 41(7): 2304-2312.
[2] 庄心善, 赵汉文, 王俊翔, 黄勇杰, 胡智. 循环荷载下重塑弱膨胀土滞回曲线 形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.
[3] 方瑾瑾, 冯以鑫, 余永强, 李震, 林志斌, . 真三轴条件下的原状黄土增湿变形特性[J]. 岩土力学, 2020, 41(4): 1235-1246.
[4] 马维嘉, 陈国兴, 吴琪, . 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542.
[5] 黄宇华, 徐林荣, 周俊杰, 蔡雨, . 基于改进Terzarghi方法的桩网地基桩土应力计算[J]. 岩土力学, 2020, 41(2): 667-675.
[6] 张峰, 陈国兴, 吴琪, 周正龙. 波浪荷载下饱和粉土不排水动力特性试验研究[J]. 岩土力学, 2019, 40(7): 2695-2702.
[7] 王铁行, 金 鑫, 罗 扬, 张松林. 考虑卸荷作用的黄土湿陷性评价方法研究[J]. 岩土力学, 2019, 40(4): 1281-1290.
[8] 刘家顺, 王来贵, 张向东, 李学彬, 张建俊, 任 昆, . 部分排水时饱和粉质黏土变围压循环三轴试验研究[J]. 岩土力学, 2019, 40(4): 1413-1419.
[9] 郭莹, 刘晓东. 成样方法对饱和粉砂不同应力路径下固结 排水剪切试验结果的影响[J]. 岩土力学, 2019, 40(10): 3783-3788.
[10] 王 军, 胡惠丽, 刘飞禹, 蔡袁强, . 粒孔比对筋土界面直剪特性的影响[J]. 岩土力学, 2018, 39(S2): 115-122.
[11] 盛云锋, 陈 远, 周 伟, 马 刚, 常晓林, . 基于改进动剪切模量模型的堆石坝动力响应分析[J]. 岩土力学, 2018, 39(S2): 405-414.
[12] 郑进修,张建海,高克静. 地下厂房支护措施经验回归及支护强度判据[J]. , 2018, 39(S1): 303-310.
[13] 陆清元,罗 强,蒋良潍, . 路堤下刚性桩复合地基桩-土应力比计算[J]. , 2018, 39(7): 2473-2482.
[14] 陈四利,李艳宇,周 辉,胡大伟,. 基于极限应力比的三参数双τ2强度准则及其应用[J]. , 2018, 39(6): 1948-1954.
[15] 田 雨,姚仰平,罗 汀. 从各向异性的角度解释和模拟土的非共轴特性[J]. , 2018, 39(6): 2035-2042.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!