›› 2017, Vol. 38 ›› Issue (1): 253-262.doi: 10.16285/j.rsm.2017.01.032

• 数值分析 • 上一篇    下一篇

基于微裂纹发育特性的大理岩特征强度数值模拟研究

黄 丹,李小青   

  1. 华中科技大学 土木工程与力学学院,湖北 武汉 430074
  • 收稿日期:2016-04-01 出版日期:2017-01-11 发布日期:2018-06-05
  • 作者简介:黄丹,女,1986年生,博士研究生,主要从事岩石及岩体力学特性方面的研究。
  • 基金资助:

    国家自然科学基金(No. 51278391)。

Numerical simulation research on characteristic strength of marble based on development of microcrack

HUANG Dan, LI Xiao-qing   

  1. School of Civil Engineering & Mechanics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China
  • Received:2016-04-01 Online:2017-01-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National natural Science Foundation of China (51278391).

摘要: 为获取锦屏大理岩的特征强度及破坏过程中损伤演化规律,运用PFC3D模拟大理岩试样并进行单轴、三轴压缩试验,以微裂纹的形态和数量的变化特征来确定大理岩的起裂和损伤强度。当微裂纹数量为峰值强度下微裂纹数量的0.1%,认为出现初始损伤,此时应力为大理岩的起裂强度。单轴压缩试验中,从裂纹形态上观察,将出现基本破裂面的应力定义为损伤强度。三轴压缩试验中,从裂纹数量上观察,将出现裂纹非稳定增长阶段时的应力定义为损伤强度。分析不同阶段出现微裂纹的位置实现了对微裂纹的定位,分析不同模型微裂纹增长量的变化,实现了对微裂纹稳定和非稳定增长的界定,补充了声发射的不足。对比PFC3D模拟和实验室试验得出的大理岩的特征强度,两者特征强度曲线的拟合函数相近。这说明运用PFC3D模拟确定大理岩的起裂强度、损伤强度的方法是一种合理的方法,微裂纹的研究对揭示脆性岩石强度破坏机制具有重要意义。

关键词: 微裂纹, 起裂强度, 损伤强度, 离散元, 主成分分析

Abstract: To obtain the characteristic strength and damage evolution law of rocks, the 3D particle flow code (PFC3D) was used to simulate Jinping II Yantang marble rock group samples. The uniaxial and triaxial compression tests were conducted, and the initial fracture strength and damage strength were determined from the variable characteristics of microcracks morphology and quantity. When the number of microcracks reached 0.1% of the total microcracks at the peak strength, it was indicated that the initial damage occurred and the stress was the initial fracture strength. In the uniaxial compression tests, the stress corresponding to basic fracture surface was defined as damage strength based upon the shape of crack. Meanwhile, in the triaxial compression test, the stress corresponding to the non-steady phase of crack growth was defined as damage strength based upon the number of cracks. By comparing the stress features obtained from PFC3D numerical and experimental results, it was shown that the fitting function of stress curves were quite similar, which indicated that the PFC3D simulation was a reasonable approach to determine the initial fracture strength and damage strength of marble. The study on microcracks was also significant to reveal failure mechanisms of brittle rocks.

Key words: microcrack, crack initiation strength, damage strength, discrete elements, principal component analysis

中图分类号: 

  • TU 452

[1] 薛亚东, 周杰, 赵丰, 李兴. 基于MatDEM的TBM滚刀破岩机理研究[J]. 岩土力学, 2020, 41(S1): 337-346.
[2] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[3] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[4] 吴祁新, 杨仲轩. 基于应变响应包络的颗粒材料增量力学行为研究[J]. 岩土力学, 2020, 41(3): 915-922.
[5] 孙博, 杨怀德, 谷玲, 刘跃, 唐碧华, 赵桂连, 张连明. 基于UDEC颗粒模型的不确定性分析[J]. 岩土力学, 2019, 40(9): 3679-3688.
[6] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的 离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426.
[7] 陈 峥, 何 平, 颜杜民, 高红杰, . 考虑土拱效应的管棚合理间距计算方法[J]. 岩土力学, 2019, 40(5): 1993-2000.
[8] 赵兰浩, 芮开天, 刘勋楠. 非均匀颗粒快速线性接触检测算法[J]. 岩土力学, 2019, 40(3): 1187-1196.
[9] 顾晓强, 杨朔成, . 基于离散元数值方法的砂土小应变弹性特性探讨[J]. 岩土力学, 2019, 40(2): 785-791.
[10] 李静, 孔祥超, 宋明水, 汪勇, 王昊, 刘旭亮, . 储层岩石微观孔隙结构对岩石力学特性 及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156.
[11] 肖思友, 苏立君, 姜元俊, 李丞, 刘振宇, . 坡度对碎屑流冲击立式拦挡墙力学特征的影响[J]. 岩土力学, 2019, 40(11): 4341-4351.
[12] 蒋 雄, 徐奴文, 周 钟, 侯东奇, 李 昂, 张 敏, . 两河口水电站母线洞开挖过程围岩破坏机制[J]. 岩土力学, 2019, 40(1): 305-314.
[13] 申海萌, 李 琦, 李霞颖, 马建力, . 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学, 2018, 39(S2): 254-262.
[14] 曾严谨,荣 冠,彭 俊,沙 松, . 高温循环作用后大理岩裂纹扩展试验研究[J]. , 2018, 39(S1): 220-226.
[15] 杨忠民,高永涛,吴顺川,成子桥,. 基于收敛–约束原理的大变形隧道初支更换时机优化研究[J]. , 2018, 39(S1): 395-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!