›› 2017, Vol. 38 ›› Issue (2): 368-376.doi: 10.16285/j.rsm.2017.02.009

• 基础理论与实验研究 • 上一篇    下一篇

盾构地中对接冻结加固模型试验(Ⅰ) ——冻结过程中地层冻结温度场的分布特征

石荣剑1, 2,岳丰田1, 2,张 勇1, 2,陆 路1, 2   

  1. 1. 中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116; 2. 中国矿业大学 力学与土木工程学院,江苏 徐州 221116
  • 收稿日期:2015-05-26 出版日期:2017-02-11 发布日期:2018-06-05
  • 作者简介:石荣剑,男,1975年生,博士,副教授,主要从事地下工程冻结法等方面的教学与研究工作。
  • 基金资助:

    国家高技术研究发展计划(863)计划(No. 2012AA06A401)

Model test on freezing reinforcement for shield junction Part 1: Distribution characteristics of temperature field in soil stratum during freezing process

SHI Rong-jian1, 2, YUE Feng-tian1, 2, ZHANG Yong1, 2, LU Lu1, 2   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2015-05-26 Online:2017-02-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National High Technology Research and Development Program of China(2012AA06A401).

摘要: 针对软土地层中盾构地中对接冻结加固施工边界条件复杂、形成冻结壁体积小且形状不规则的特点,以上海地区某盾构对接冻结加固工程为原型,按照相似理论设计进行了冻结加固模型试验,分析了冻结过程中地层温度场的分布规律,获得以下结论:在盾构壳体内表面保温的条件下,冻结管内部冻土的平均发展速度是冻结管外部的1.5倍左右;冻结28 h后,冻结管内部冻结壁的温度分布基本稳定,盾构壳体与土体交接面的温度均处于 20 ℃左右,内部冻结壁的平均温度约为外部的1.9倍。在同圈冻结管的叠加作用下,冻结过程中冻结壁主面和界面的温度变化规律基本一致,仅在冻结初期有少许差别。在外圈冻结管的低温屏蔽作用下,内圈冻结管对外部土体基本不发挥冻结作用,在不同冻结管排间距及多根冻结管交叉冻结的情况下,冻结管外部的冻土扩展规律基本相同,仅两排冻结管之间的土体温度分布存在差别。研究结果表明,盾构地中对接冻结加固形成的冻结壁形状与外圈冻结管的布置形式相似,形成的冻结壁厚度及平均温度在冻结28 h后基本稳定。

关键词: 人工冻结, 冻结壁, 温度场, 盾构对接, 模型试验

Abstract: The complicated construction conditions, the small volume and irregular shape of the frozen wall are the characteristics of freezing reinforcement for shield junction in soft soil stratum. According to a freezing reinforcement project of shield junction in Shanghai, the model test based on similarity theory is conducted. Some conclusions are drawn through analyzing temperature data measured in the test. Firstly, under the condition of constant temperature on the inner surface of shield shell, the average expansion speed of the frozen soil inside the freezing-pipes is about 1.5 times that of outside the freezing-pipes. And the average temperature of the inside frozen wall is about 1.9 times that of the external frozen wall after 28 hours, when the temperature at the interface of shield and soil is about ?20 °C. Secondly, with a superposition of freezing-pipes, little difference appears at the beginning, and then similar variation for the temperature occurs in main plane and interface of the frozen wall during the freezing process. Thirdly, the freezing effect of the inner freezing-pipes on the outside soil is insignificant due to the temperature shielding of outside freezing-pipes, which leads to identical frozen wall thickness in the case of different freezing tube spaces and multiple freezing pipes crossing. Little difference in temperature distribution is found inside the frozen wall. The research results indicate a similar shape of the frozen wall to the layout of the outside freezing pipes during freezing process, and unchanged thickness and average temperature of frozen wall in 28 hours.

Key words: artificial ground freezing, frozen wall, temperature field, shield junction, model test

中图分类号: 

  • TU 447

[1] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[2] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[3] 周祥运, 孙德安, 罗汀. 核废料处置库近场温度半解析研究[J]. 岩土力学, 2020, 41(S1): 246-254.
[4] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[5] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[6] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[7] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[8] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[9] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[10] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[11] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[12] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[13] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[14] 宋丁豹, 蒲诃夫, 陈保国, 孟庆达, . 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41(3): 823-830.
[15] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!