›› 2017, Vol. 38 ›› Issue (2): 419-427.doi: 10.16285/j.rsm.2017.02.015

• 基础理论与实验研究 • 上一篇    下一篇

水土化学作用对土体黏聚力的影响 ——以蒙脱石-石英砂重塑土为例

刘 剑1, 2,崔 鹏1, 3   

  1. 1. 中国科学院水利部成都山地灾害与环境研究所 中国科学院山地灾害与地表过程重点实验室,四川 成都 610041; 2. 中国科学院大学,北京 100049;3. 中国科学院青藏高原地球科学卓越创新中心,北京 100101
  • 收稿日期:2015-03-11 出版日期:2017-02-11 发布日期:2018-06-05
  • 通讯作者: 崔鹏,男,1957年生,博士,研究员,主要从事山地灾害与水土保持方面的研究工作。E-mail: pengcui@imde.ac.cn E-mail: 5102135@163.com
  • 作者简介:刘剑,男,1983年生,博士研究生,主要从事水土化学作用方面的研究工作。
  • 基金资助:

    国家科技支撑计划课题(No. 2012BAC06B02);中国科学院重点部署项目(No. KZZD-EW-05-01)。

Influence of water-soil chemical interaction on cohesive force: A case study of montmorillonite-quartz remolded soil

LIU Jian1, 2, CUI Peng1, 3   

  1. 1. Key Laboratory of Mountain Hazards and Land Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2015-03-11 Online:2017-02-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Key Technology R&D Program (2012BAC06B02) and the Key Research Program of the Chinese Academy of Sciences (KZZD-EW-05-01).

摘要: 为研究水土化学作用对土体黏聚力的影响,通过将蒙脱石-石英砂重塑土分别浸泡于超纯水(正常水体)、pH=3的HNO3(酸雨)和pH=13.5的NaOH溶液(碱性废液)中,对黏聚力变化规律和机制进行了探讨。研究发现:超纯水条件下,黏聚力先上升后下降再上升;酸性条件下,黏聚力先下降后上升再下降;碱性条件下,黏聚力先下降后上升再下降,后期出现反弹。温度对各种条件下的反应均有促进作用,但程度不一。X射线衍射(XRD)结果表明,酸会溶蚀胶结物蒙脱石,且没有新物质生成,导致黏聚力下降,浸泡中期黏聚力增大的原因尚不明确。碱性条件下有水化硅酸钙(CSH)生成,超纯水条件下还有碳酸钙(CaCO3)生成。两种新胶结物均为离子化合物,晶胞之间以化学键相连,其键强度远大于相邻蒙脱石层组间的结合力强度。新生胶结物造成超纯水和碱性条件下黏聚力上升,化学溶蚀和离子交换是黏聚力下降的主要原因。此外,结合土质滑坡垂压和内摩擦角情况,分析了水土化学作用下的土体抗剪强度变化。超纯水条件下,抗剪强度总体变化不大;酸性条件下,抗剪强度变化与黏聚力变化一致;碱性条件下,抗剪强度表现为总体增大。

关键词: 蒙脱石, 水土化学作用, 黏聚力, 水化硅酸钙

Abstract: To study the influence of water-soil chemical interaction on cohesive force under different conditions, montmorillonite- quartz remolded soil is prepared and soaked in ultrapure water (normal water), pH=3 HNO3 (acid rain) and pH=13.5 NaOH (alkaline waste liquid). The results show that, under the condition of ultrapure water, the cohesive force rises firstly and then declines and then rises again; under the acid condition, the cohesive force declines firstly and then rises and then declines again; under the alkaline condition, the cohesive force declines firstly and then rises and then declines again, at last rebounds. Temperature promotes the chemical reactions at different degrees. The X-ray diffraction analysis results show that acid causes corrosion to montmorillonite mineral. None of new material generated in montmorillonite sample during the soaking process leads to a decline in cohesive force. The reason for cohesive force rise in the middle stage of acid soaking is not clear. Under the alkaline condition, calcium silicate hydrate (CSH) is generated. Under the condition of ultrapure water, both CSH and CaCO3 are generated. The bond strength, connecting the unit cells through chemical bonds for the new ionic cements, is far greater than the strength of binding force connecting two adjacent montmorillonite layers. The presence of new cements cause rise of cohesive force under ultrapure water and alkaline conditions. Chemolysis and ion exchange are the main reasons for descent of cohesive force. Furthermore, combined with the vertical pressure of soil landslide and the internal friction angle, the shear strength variation of soil under the influence of water-soil chemical interaction is analyzed. Under the ultrapure water condition, the shear strength changes slightly in general; under the acid condition, the shear strength changes in accordance with the cohesive force; and under the alkaline condition, the shear strength increases in general.

Key words: montmorillonite, water-soil chemical interaction, cohesive force, calcium silicate hydrate

中图分类号: 

  • TU 43

[1] 秦爱芳, 胡宏亮. 碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J]. 岩土力学, 2020, 41(S1): 123-131.
[2] 谢辉辉, 许振浩, 刘清秉, 胡桂阳, . 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(S1): 245-252.
[3] 吉恩跃, 陈生水, 傅中志, . 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4777-4782.
[4] 徐云山, 孙德安, 曾召田, 吕海波, . 膨润土热传导性能时效性试验研究[J]. 岩土力学, 2019, 40(11): 4324-4330.
[5] 孙德安,张乾越,张 龙,朱赞成,. 高庙子膨润土强度时效性试验研究[J]. , 2018, 39(4): 1191-1196.
[6] 韩同春, 谢灵翔, 刘 振, . 坑中坑条件下基坑有限土体的被动土压力计算[J]. 岩土力学, 2018, 39(12): 4404-4412.
[7] 刘 鹏,刘俊新,冒海军,杨仲田,刘 伟,巫尚蔚,王文清,. γ辐照老化对高庙子天然钠基膨润土力学强度和变形特性影响研究[J]. , 2017, 38(10): 2949-2956.
[8] 张治国,徐晓洋,赵其华,. 水平地震力作用下浅埋偏压隧道围岩压力的简化理论分析[J]. , 2016, 37(S2): 16-24.
[9] 王 艳,傅俊醒,唐 强,胡安详,刘佳鑫,. 表面活性剂改性粉土抗剪强度特性的研究[J]. , 2016, 37(S1): 329-333.
[10] 梁 桥,杨小礼,张佳华,周文权, . 非均质土体中盾构隧道开挖面支护力上限分析[J]. , 2016, 37(9): 2585-2592.
[11] 孙文静,刘仕卿,孙德安,魏振飞. 掺砂率对膨润土与砂混合物膨胀特性的影响[J]. , 2016, 37(6): 1642-1648.
[12] 张 龙 ,孙德安 ,刘月妙,. 两种高庙子钠基膨润土膨胀特性比较研究[J]. , 2016, 37(12): 3447-3454.
[13] 孔令伟 ,臧 濛 ,郭爱国 ,拓勇飞,. 湛江强结构性黏土强度特性的应力路径效应[J]. , 2015, 36(S1): 19-24.
[14] 周 泓 ,张豫川 ,张 泽 ,冯文杰 ,周 波 ,武俊杰,. 冻融作用下冻结黄土黏聚力长期强度变化规律[J]. , 2014, 35(8): 2241-2246.
[15] 黄 磊 ,卢义玉 ,夏彬伟 ,贾亚杰 ,黄 飞 , . 深埋软弱岩层钻孔围岩应变软化弹塑性分析[J]. , 2013, 34(S1): 179-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!