›› 2017, Vol. 38 ›› Issue (3): 793-800.doi: 10.16285/j.rsm.2017.03.023

• 岩土工程研究 • 上一篇    下一篇

深井高应力软岩沿空留巷围岩破坏机制及控制

武精科1,阚甲广2,谢生荣1,谢福星1,陈冬冬1   

  1. 1. 中国矿业大学(北京) 资源与安全工程学院,北京 100083;2. 中国矿业大学 矿业工程学院,江苏 徐州 221116
  • 收稿日期:2015-09-05 出版日期:2017-03-11 发布日期:2018-06-05
  • 通讯作者: 阚甲广,男,1983年生,博士,主要从事巷道围岩控制研究及教学工作。E-mail: jgkan@126.com E-mail:jkwucumt@126.com
  • 作者简介:武精科,男,1987年生,博士研究生,主要从事巷道支护与围岩稳定性控制方面的研究工作。
  • 基金资助:

    国家自然科学基金项目(No.51574243,No.51504259);中央高校基本科研业务费专项资金资助(No.2010YZ02);江苏省基础研究计划(No.BK20151145)。

Failure mechanisms and control of surrounding rock of deep gob-side entry retaining in soft rock strata under high stress

WU Jing-ke1, KAN Jia-guang2, XIE Sheng-rong1, XIE Fu-xing1, CHEN Dong-dong1   

  1. 1. College of Resources & Safety Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China; 2. School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2015-09-05 Online:2017-03-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51574243, 51504259), the Fundamental Research Funds for the Central Universities (2010YZ02) and the Jiangsu Basic Research Program (BK20151145).

摘要: 针对深井高应力软岩沿空留巷围岩大变形难题,通过现场调研、理论分析和相似模拟试验,分析了围岩特性、支护结构破坏形式及其破坏演化过程,并对围岩破坏机制和围岩控制技术进行了深入系统研究。结果表明:厚层泥岩低强度、软化吸水膨胀及其在强采动高应力状态下碎裂扩容、长期蠕变是围岩大变形的诱因;围岩变形破坏相对于巷道横截面铅垂和水平方向呈明显不对称状态;原有围岩支护系统没有形成一个完整承载结构,使支护体被各个击破,围岩破坏顺序:充填区域顶板破碎→充填体偏心受载压裂片落→巷内顶板急剧倾斜下沉→实体煤帮外鼓片帮,最终导致围岩失稳;提出顶板分区耦合支护和以充填区域顶板为关键纽带的“四位一体”围岩控制技术,该技术能够提高巷道整体稳定性,避免围岩局部破坏造成的支护结构失稳,保障巷道安全畅通。

关键词: 深井沿空留巷, 软岩, 高应力, 破坏机制, 围岩控制

Abstract: To solve the large deformation problem of deep gob-side entry retaining in soft rock under high stress, lithological characteristics of surrounding rock, failure modes of supporting structure and its evolutionary process are analyzed by the methods of field investigation, theoretical analysis and similar tests. Failure mechanisms of surrounding rock and its control technology are studied systematically. The results show that the large deformation inducements of surrounding rock are weak thick mudstone with softening property and water absorption behavior, as well as its fragmentation, dilatancy and long-term creep in strong disturbance and highly centralized stress state. The cross-section shape of roadway after deformation and failure of surrounding rock is obviously asymmetric in both horizontal and vertical directions. As the original supporting system of surrounding rock does not form into a complete bearing structure, each part of the supporting system is destroyed one by one. The failure sequences of surrounding rock are as following: (1) roof fracture of backfilling area, (2) backfill fracture under eccentric load, (3) rapid subsidence of roadway roof, (4) external crack drum and rib spalling of solid coal side, and as a result, the instability of the whole surrounding rock occurs. The partitioned coupling support and the quaternity control technology of surrounding rock are proposed, which take the roof of backfilling area as a key link. The technology can improve the overall stability of gob-side entry retaining, avoid support structure instability caused by local failure of surrounding rock, and ensure the safety and smoothness of roadway.

Key words: deep gob-side entry retaining, soft rock, high stress, failure mechanism, surrounding rock control

中图分类号: 

  • TU 45

[1] 田云, 陈卫忠, 田洪铭, 赵明, 曾春涛. 考虑软岩强度时效弱化的缓冲层让压支护设计研究[J]. 岩土力学, 2020, 41(S1): 237-245.
[2] 杨括宇, 陈从新, 夏开宗, 宋许根, 张伟, 张褚强, 王田龙. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.
[3] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[4] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[5] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[6] 周翠英, 孔令华, 崔光俊, 于磊, 刘镇, . 基于天然红层材料的软岩成型模拟研究[J]. 岩土力学, 2020, 41(2): 419-427.
[7] 周翠英, 梁宁, 刘镇, . 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(S1): 21-31.
[8] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[9] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[10] 周翠英, 黄思宇, 刘镇, 陆仪启, . 红层软岩软化的界面过程及其动力学模型[J]. 岩土力学, 2019, 40(8): 3189-3196.
[11] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[12] 宫凤强, 伍武星, 李天斌, 司雪峰, . 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学, 2019, 40(6): 2085-2098.
[13] 李建朋, 高岭, 母焕胜. 高应力卸荷条件下砂岩扩容特征及其剪胀角函数[J]. 岩土力学, 2019, 40(6): 2119-2126.
[14] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[15] 杨骐莱, 熊勇林, 张 升, 刘干斌, 郑荣跃, 张 锋, . 考虑温度影响的软岩弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1898-1906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!