›› 2017, Vol. 38 ›› Issue (4): 958-964.doi: 10.16285/j.rsm.2017.04.005

• 基础理论与实验研究 • 上一篇    下一篇

多次温度循环对能量桩桩顶位移影响分析

孔纲强1,王成龙2, 3,刘汉龙1, 2, 3,吴 迪2, 3,车 平4   

  1. 1. 河海大学 土木与交通学院,江苏 南京 210098;2. 重庆大学 土木工程学院,重庆 400045; 3. 重庆大学 山地城镇建设与新技术教育部重点试验室,重庆 400045;4. 江苏省有色金属华东地质勘查局,江苏 南京 210007
  • 收稿日期:2015-05-10 出版日期:2017-04-11 发布日期:2018-06-05
  • 通讯作者: 王成龙,男,1989年生,博士研究生,主要从事能量桩桩-土相互作用方面的科研工作。E-mail: wangchlong586@163.com E-mail:gqkong1@163.com
  • 作者简介:孔纲强,男,1982年生,博士,教授、博士生导师,主要从事桩-土相互作用方面的教学和科研。
  • 基金资助:

    国家自然科学基金项目(No. 51378178);教育部博士点联合基金项目(No. 20130094140001);山地城镇建设与新技术教育部重点实验室开放基金项目(No. 0902071812401);江苏省自然科学基金(No. BK2012478)。

Analysis of pile head displacement of energy pile under repeated temperature cycling

KONG Gang-qiang1, WANG Cheng-long2, 3, LIU Han-long1, 2, 3, WU Di2, 3, CHE Ping4   

  1. 1. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 3. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 4. East China Mineral Exploration and Development Bureau, Nanjing, Jiangsu 210007, China
  • Received:2015-05-10 Online:2017-04-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51378178), the Doctoral Program Foundation of Ministry of Education of China (20130094140001), the Foundation of Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education (0902071812401) and the Natural Science Foundation of Jiangsu Province (BK2012478).

摘要: 能量桩是一种在承载上部建筑荷载的同时获取地热能源的新技术。但目前对于能量桩在冷、热循环过程中尤其多次冷、热循环情况下的热力学效应研究较少。基于模型试验方法,针对预埋钢管单U型新型能量桩,开展工作荷载作用下多次冷、热循环时的传热特性和承载特性,尤其是桩顶位移变化规律的研究;并开展无荷载作用下单次冷、热循环试验进行分析。试验结果表明,冷、热循环引起的桩体热应变,在加热时桩体内部产生压应力,而在制冷时桩体内部产生拉应力,同时温度引起桩侧不同部位分别产生正摩阻力和负摩阻力。相较于工作荷载,无荷载作用下加热会使桩体位移上升约41%,而一次加热与制冷循环作用后,无荷载作用下桩顶残余位移约为工作荷载作用下的10%。多次冷、热温度循环会导致桩体沉降不断积累。

关键词: 桩基, 能量桩, 预埋钢管, 热力学效应, 模型试验

Abstract: Energy pile is a new technology which supports the upper building load and extracts geothermal energy from its surrounding simultaneously. However, there is only little research available on the thermal-mechanical behavior of the piles subject to heating-cooling cycles and particularly repeated cycles. Model tests are carried out to examine the heat transfer performance and bearing characteristics of energy pile with embedded steel tube under working loading conditions over repeated temperature cycling, and especially the law of pile head displacement. Moreover, the displacement is also observed and analyzed under no load over one cycle of heating and cooling for comparative analysis. The results show that the heating-cooling cycles produce thermal strain in the pile shaft, heating generates compressive stress and cooling induces the tensile stress. Meanwhile, the positive and negative frictions are yielded in different parts of the pile side due to temperature. The upward displacement magnitude of pile top under no working load is 41% greater than that under working load, but the final displacement of pile top is approximately 10% of that under working load after one heating-cooling cycle. The repeated temperature cycling can lead to continuous accumulation of settlement.

Key words: pile foundation, energy pile, embedded steel tube, thermal mechanical behavior, model test

中图分类号: 

  • TU 473

[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 李任融, 孔纲强, 杨庆, 孙广超. 流速对桩−筏基础中能量桩换热效率 与热力耦合特性影响研究[J]. 岩土力学, 2020, 41(S1): 264-270.
[3] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[4] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[5] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[6] 刘争宏, 张龙, 郑建国, 张炜, 于永堂, . 滑动测微管抗渗能力的测试装置及试验研究[J]. 岩土力学, 2020, 41(7): 2504-2515.
[7] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[8] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[9] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[10] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[11] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[12] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[13] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[14] 宋丁豹, 蒲诃夫, 陈保国, 孟庆达, . 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41(3): 823-830.
[15] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!