›› 2017, Vol. 38 ›› Issue (4): 1179-1187.doi: 10.16285/j.rsm.2017.04.032

• 数值分析 • 上一篇    下一篇

全风化花岗岩突水通道扩展的颗粒起动流速研究

刘金泉1, 2,杨典森1,陈卫忠1, 3,袁敬强1,李长俊1,亓宪寅1   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 中国科学院大学,北京 100049;3. 山东大学 岩土与结构工程研究中心,山东 济南 250061
  • 收稿日期:2015-06-01 出版日期:2017-04-11 发布日期:2018-06-05
  • 通讯作者: 杨典森,男,1978年生,博士,博士生导师,主要从事岩体多场耦合方面的研究工作。E-mail: dsyang@whrsm.ac.cn E-mail: jinquanliu99@163.com
  • 作者简介:刘金泉,男,1989年生,博士研究生,主要从事地下工程突水突泥机理与灾害控制理论方面的研究工作
  • 基金资助:

    国家重点基础研究发展计划973项目研究课题(No. 2013CB036006);国家自然科学基金(No. 51379200,No. 51225902)。

Research on particle starting velocity in the expansion of water inrush channel in completely weathered granite

LIU Jin-quan1, 2, YANG Dian-sen1, CHEN Wei-zhong1, 3, YUAN Jing-qiang1, LI Chang-jun1, QI Xian-yin1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan,Hubei 430071,China; 2.University of Chinese Academy of Sciences, Beijing, 100049,China;3. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China
  • Received:2015-06-01 Online:2017-04-11 Published:2018-06-05
  • Supported by:

    This work was supported by National Basic Research Program of China (973 Program) (2013CB036006) and National Natural Science Foundation (51379200, 51225902).

摘要: 突水突泥是富水全强风化花岗岩隧道施工常见的地质灾害,地层颗粒的流失是导致突水通道扩展的关键因素,其中颗粒达到起动流速是其流失的临界条件。考虑水流冲刷和土体黏结作用,对突水通道断面颗粒进行三维受力分析,导出颗粒的临界起动条件,建立了考虑颗粒粒径、颗粒坡面位置、相对暴露度三因素的颗粒起动流速函数,并利用数值方法分析了上述三因素对起动流速的影响规律。计算分析表明:起动流速随粒径增大先减小后增大,通道断面不同坡面位置颗粒起动流速呈明显的对称性,总体上起动流速随相对暴露度的增大呈增大趋势。采用正交试验法研究了三因素对颗粒起动流速的敏感性,发现粒径对起动流速影响最为显著。同时根据断面颗粒起动最小流速标准及相对暴露度的随机性,简化颗粒坡面位置和相对暴露度两因素,导出颗粒起动流速的简化公式,最后利用室内试验和工程实例验证了该公式的合理性。

关键词: 全风化花岗岩, 突水通道, 起动流速, 粒径, 颗粒坡面位置, 相对暴露度

Abstract: Water and mud inrush is a common geological disaster in the completely weathered granite tunnel during construction. The key factor leading to the expansion of water inrush channel is the loss of soil particles, where the starting velocity is the critical condition of its loss. By considering the water erosion and particles adhesion, the particle 3D force in the water inrush channel cross-section was analyzed, and the function of particles starting velocity was established. The function includes the following factors, namely, the particle diameter, the particle position of channel cross-section and relative exposure degree of the particle. Meanwhile, numerical simulation was conducted to analyze the effect of the above three factors on the starting velocity. Numerical results showed that the starting velocity decreased initially and then increased with the increase of particle diameter. Furthermore, the starting velocities of channel cross-section at different positions were symmetry, and they were increased with the increase of relative exposure degree generally. By combining with orthogonal tests to analyze the sensitivity to starting velocity for the above three factors, the results showed that the diameter was the most sensitive factor. Accordingly, by considering the minimum starting velocity standard of channel cross-section and the randomness of relative exposure degree, the factors of particle position of channel cross-section and relative degree of exposure were simplified, and a simplified theoretical formula of the starting velocity was developed. Finally, the rationality of the starting velocity formula was verified by the laboratory test and field investigation.

Key words: completely weathered granite, water inrush channel, starting velocity, particle diameter, particle slope position, relative exposure degree

中图分类号: 

  • TU 452

[1] 潘锐, 程桦, 王雷, 王凤云, 蔡毅, 曹广勇, 张朋, 张皓杰, . 巷道浅层破碎围岩锚注加固承载特性试验研究[J]. 岩土力学, 2020, 41(6): 1887-1898.
[2] 闫超萍, 龙志林, 周益春, 旷杜敏, 陈佳敏, . 钙质砂剪切特性的围压效应和粒径效应研究[J]. 岩土力学, 2020, 41(2): 581-591.
[3] 刘成禹, 陈博文, 罗洪林, 阮家椿, . 满流条件下管道破损诱发渗流侵蚀的试验研究[J]. 岩土力学, 2020, 41(1): 1-10.
[4] 张升, 乔春晖, 李希, 沈远, . 考虑级配多样性的颗分试验取样质量理论研究[J]. 岩土力学, 2019, 40(7): 2555-2562.
[5] 王平, 朱永建, 余伟健, 任恒, 黄钟, . 软弱破碎围岩分次压实力学特性试验分析[J]. 岩土力学, 2019, 40(7): 2703-2712.
[6] 高青鹏, 曹 平, 王 飞, 王 柱. 压剪作用下多节理类岩试样力学性质及破坏判据[J]. 岩土力学, 2019, 40(3): 1013-1022.
[7] 李明玉, 孙文静. 黏土掺入生物炭后的持水特性及其影响机制[J]. 岩土力学, 2019, 40(12): 4722-4730.
[8] 费锁柱, 谭晓慧, 孙志豪, 杜林枫. 基于微结构模拟的土体自相关距离分析[J]. 岩土力学, 2019, 40(12): 4751-4758.
[9] 刘一飞, 郑东生, 杨 兵, 祝 兵, 孙明祥. 粒径及级配特性对土体渗透系数影响的细观模拟[J]. 岩土力学, 2019, 40(1): 403-412.
[10] 王 军, 胡惠丽, 刘飞禹, 蔡袁强, . 粒孔比对筋土界面直剪特性的影响[J]. 岩土力学, 2018, 39(S2): 115-122.
[11] 郭林坪,孔令伟,徐 超,杨爱武,. 厦门花岗岩残积土物理力学指标关联性定量表征初探[J]. , 2018, 39(S1): 175-180.
[12] 刘星志,刘小文,陈 铭,谷明晗. 基于3个不等粒径颗粒接触模型的土-水特征曲线[J]. , 2018, 39(2): 651-656.
[13] 杨 斌,徐曾和,杨天鸿,杨 鑫,师文豪, . 高水力梯度条件下颗粒堆积型多孔介质渗流规律试验研究[J]. , 2018, 39(11): 4017-4024.
[14] 吴 琪,陈国兴,朱雨萌,周正龙,凌道盛,. 砂–粉混合料阈值细粒含量的确定[J]. , 2017, 38(S2): 107-115.
[15] 孙运江,左建平,李玉宝,刘存辉,李彦红,史 月,. 邢东矿深部带压开采导水裂隙带微震监测及突水机制分析[J]. , 2017, 38(8): 2335-2342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!