›› 2017, Vol. 38 ›› Issue (7): 2113-2118.doi: 10.16285/j.rsm.2017.07.035

• 数值分析 • 上一篇    下一篇

极端波浪荷载作用下近海桥梁下方海床瞬态液化稳定性研究

段伦良,张启博,黄 博,祝 兵   

  1. 西南交通大学 桥梁工程系,四川 成都 610031
  • 收稿日期:2016-07-13 出版日期:2017-07-10 发布日期:2018-06-05
  • 通讯作者: 黄博,男,博士,主要从事桥梁结构动力学及桥梁风浪耦合动力学研究。E-mail: bohuang-swjtu@my.swjtu.edu.cn E-mail: llduan@my.swjtu.edu.cn
  • 作者简介:段伦良,男,1989年生,博士研究生,主要从事流固土相互作用理论与桥梁灾变控制研究
  • 基金资助:

    国家自然科学基金(No. 51178397)

Study of transient liquefaction stability of seabed beneath offshore bridge under extreme wave loading

DUAN Lun-liang, ZHANG Qi-bo, HUANG Bo, ZHU Bing   

  1. Department of Bridge Engineering, South West Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2016-07-13 Online:2017-07-10 Published:2018-06-05
  • Supported by:

    This work was supported by the General Program of the National Natural Foundation of China (51178397).

摘要: 为研究极端波浪荷载作用下近海桥梁下方密实海床的瞬态液化稳定性,通过求解RANS方程和Biot方程,建立了极端波浪作用下箱梁下方密实海床动力响应的有限元数值模型。将该模型与以往试验结果对比,验证了该模型的准确性,基于此模型进一步研究了极端波浪作用下箱梁周围的波浪压力场分布及波浪特性、淹没深度对桥梁下方密实海床瞬态液化稳定性的影响。研究结果表明:处于淹没状态的箱梁对周围波压场影响较大,箱梁迎浪侧密实海床的瞬态液化深度大于背浪侧,液化深度幅值距离箱梁1/10~1/8波长范围内达到最大;随着波高与波浪周期的增大,箱梁左、右两侧密实海床瞬态液化深度均增大;在迎浪侧,当箱梁刚好完全被淹没时,海床瞬态液化深度最大,而在背浪侧,随着淹没深度增加,箱梁下方海床趋于安全。其研究结果可为跨海桥梁安全性分析提供参考。

关键词: 极端波浪, RANS方程, 海床, 液化, 箱梁

Abstract: To investigate the transient liquefaction stability of dense seabed soil beneath the offshore bridge under extreme wave loads, a finite element numerical model for simulating dynamic response of seabed is developed and solved by RANS equation and Biot equation. Accuracy of the proposed model is verified by experimental data from literatures. The distribution of the wave pressure field is applied to analyze the effects of the wave characteristics and the submerged depth on the transient liquefaction stability of dense seabed. Results of numerical simulation indicate that the submerged girder can significantly affect the wave pressure field, and the amplitude of the liquefied depth in front of the girder is greater than that in rear of the girder. The largest liquefied depth is located within the range of 1/10-1/8 distant from the front of the box girder. The amplitude of the liquefied depth increases with the increment of both wave height and wave period. The seabed in front of the box girder is the easiest to be liquefied when the box girder is just submerged while the seabed gets more stable with the increment of the submerged depth in rear of the girder. The results of the study can provide a reference for the safety analysis of cross-sea bridges.

Key words: extreme wave, RANS equation, seabed, liquefaction, box girder

中图分类号: 

  • TU 452

[1] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 基于自由场大型振动台试验的饱和砂土 固-液相变特征研究[J]. 岩土力学, 2020, 41(7): 2189-2198.
[2] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
[3] 马维嘉, 陈国兴, 吴琪, . 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542.
[4] 熊辉, 杨丰, . 文克尔地基模型下液化土桩基水平振动响应分析[J]. 岩土力学, 2020, 41(1): 103-110.
[5] 李兆焱, 袁晓铭, 孙锐. 液化判别临界曲线的变化模式与一般规律[J]. 岩土力学, 2019, 40(9): 3603-3609.
[6] 杨洋, 孙锐, 陈卓识, 袁晓铭. 基于土层常规参数的剪切波速液化概率计算公式[J]. 岩土力学, 2019, 40(7): 2755-2764.
[7] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
[8] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[9] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
[10] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[11] 裴向军, 朱 凌, 崔圣华, 张晓超, 梁玉飞, 高会会, 张子东. 大光包滑坡层间错动带液化特性及 滑坡启动成因探讨[J]. 岩土力学, 2019, 40(3): 1085-1096.
[12] 李晶, 陈育民, 方志, 高晗, 飞田哲男, 周葛, . 减饱和砂土缓倾场地的液化性状分析[J]. 岩土力学, 2019, 40(11): 4352-4360.
[13] 王丽艳, 巩文雪, 曹晓婷, 姜朋明, 王炳辉. 砾钢渣抗液化特性试验研究[J]. 岩土力学, 2019, 40(10): 3741-3750.
[14] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 液化自由场地震响应大型振动台模型试验分析[J]. 岩土力学, 2019, 40(10): 3767-3777.
[15] 高冉, 叶剑红, . 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!