›› 2017, Vol. 38 ›› Issue (7): 2137-2148.doi: 10.16285/j.rsm.2017.07.038

• 测试技术 • 上一篇    下一篇

地下工程远程在线遥测技术及在大狮子隧道的应用

冉曙光1,江 权1,宋磊博1,王百林2,陈 涛2,刘 挺2,吕勇刚3   

  1. 1. 中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 宁波市高等级公路建设指挥部,浙江 宁波 315100,3. 中交公路规划设计院有限公司,北京 100082
  • 收稿日期:2016-08-31 出版日期:2017-07-10 发布日期:2018-06-05
  • 通讯作者: 江权,男,1978年生,博士,研究员,主要从事地下工程数值模拟、大型硐室群稳定性分析、工程地质灾害治理等方面的研究工作。 E-mail: qjiang@whrsm.ac.cn E-mail:ranshuguang@126.com
  • 作者简介:冉曙光,男,1990年生,硕士,主要从事隧道远程监测及地下工程围岩稳定性分析等方面的研究工作。
  • 基金资助:

    十三五国家重点研发计划(No. 2016YFC0600707);国家自然科学基金项目(No. 51379202);中科院创新促进会项目(No. 2013215)。

Remote online monitoring technology for underground engineering and its application to Dashizi tunnel

RAN Shu-guang1, JIANG Quan1, SONG Lei-bo1, WANG Bai-lin2, CHEN Tao2, LIU Ting2, LÜ Yong-gang3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. Ningbo Highway Construction Headquarters, Ningbo, Zhejiang 315100, China; 3. CCCC Highway Consultants Co., Ltd., Beijing 100082, China
  • Received:2016-08-31 Online:2017-07-10 Published:2018-06-05
  • Supported by:

    This work was supported by State Key Research Development Program of China (2016YFC0600707), National Natural Science Foundation of China (51379202) and the Fund of Youth Innovation Promotion Association CAS (20113215).

摘要: 近年来,国内山岭隧道塌方事故频发,造成了惨重的人员伤亡和巨大的设备损失,如何通过现场监测实时掌控围岩稳定性并进行安全预警已成为当前山岭隧道修建的关键难题之一。依托围岩塌方风险较高的大狮子隧道(宁波地区最长的公路隧道),阐明了隧道内围岩远程在线遥测技术的信号采集、传输与后台处理原理,基于现场监测组网的总线理论(FCS)和分组无线传输技术(GPRS),提出了一种新型隧道远程在线遥测系统构架方式。该系统构架采用洞内有线+无线的组网方案,包括监测数据的采集传输、管理分析、远程接收子系统3个部分。运用该系统对大狮子隧道围岩变形、锚杆应力、围岩与钢拱架之间喷层压应力开展了全天候实时高频监测,并采用服务器+客户端模式,实现了采集数据远程同步高速传输与多单位实时监控。通过分析高频采集数据后获得的监测量时程曲线(变形、应力、压力),发现大狮子隧道的围岩变形在整体变化趋势上呈现出一种台阶式的波动增长变化规律,受爆破开挖影响后变形值产生突变;同时围岩变形与喷层压力值受后续隧道开挖扰动的波动影响较大,但总体变化趋势上基本经历了前期快速变化-中期缓慢变化-后期逐步稳定3个阶段。通过对隧道近一年的远程在线监测表明,其技术可完全实现地下工程围岩稳定性的远程遥测和无人值守预警,具有良好的应用前景。

关键词: 隧道, 远程监测, 智能传感器, 现场总线系统, 实时预警

Abstract: In recent years, the mountain tunnel collapse accidents occur frequently in China, which results in heavy casualties and huge property damage. Hence, the real-time field monitoring of surrounding rock stability and the early safety warning have become one of the key issues in current mountain tunnel constructions. Firstly, this paper clarified all the relating concepts of the remote online monitoring technology, including its signal collection, transmission and background processing principle, focus control system (FCS) and general packet radio service (GPRS). Then, a new type of tunnel remote telemetry system was proposed. The system adopted the wired and wireless networking schemes in the tunnels, including the signal collection and transmission subsystem, the management analysis subsystem and the remote receiving subsystem. Finally, the system was applied to Dashizi tunnel with the high-risk collapse, the longest road tunnel in Ningbo. All-weather real-time high-frequency monitoring was recorded, including the deformation of surrounding rock, the stress of bolts, and the shotcrete stress between surrounding rock and steel arch. In addition, server + client mode was employed to achieve a high-speed transmission of remote data and multi-unit real-time monitoring. The obtained time-history curves (i.e., deformation, stress and pressure) were analyzed. It indicates that the deformation of surrounding rock of Dashizi tunnel shows a change of the step-like fluctuation and exhibits a mutation after blasting excavation. Meanwhile, it is found that the deformation of surrounding rock and the pressure of the shotcrete layer are greatly affected by the tunnel excavation disturbance. However, the overall trend of change basically undergoes rapid change at the early stage, a slow change at the middle stage and the gradual stability at the late stage. Through the remote online monitoring of the tunnel for nearly one year, it shows that the technology can realize the long-range telemetry and unattended warning of the stability of underground engineering surrounding rock, which has great application prospect.

Key words: tunnel, remote monitoring, smart sensor, fieldbus control system, real-time warning

中图分类号: 

  • U 451

[1] 徐日庆, 程康, 应宏伟, 林存刚, 梁荣柱, 冯苏阳, . 考虑埋深与剪切效应的基坑卸荷下卧 隧道的形变响应[J]. 岩土力学, 2020, 41(S1): 195-207.
[2] 郑刚, 栗晴瀚, 程雪松, 哈达, 赵悦镔. 承压层快速减压与回灌应用于隧道抢险的理论与设计[J]. 岩土力学, 2020, 41(S1): 208-216.
[3] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[4] 房昱纬, 吴振君, 盛谦, 汤华, 梁栋才, . 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503.
[5] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[6] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[7] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[8] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[9] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[10] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[11] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[12] 郑立夫, 高永涛, 周喻, 田书广. 基于流固耦合理论水下隧道冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(3): 1029-1038.
[13] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[14] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[15] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!