›› 2017, Vol. 38 ›› Issue (S1): 323-330.doi: 10.16285/j.rsm.2017.S1.040

• 岩土工程研究 • 上一篇    下一篇

软弱围岩隧道掌子面及超前核心土挤出位移特征研究

叶 飞1,宋 京1,唐勇三2,林剑飞3,贾 涛4   

  1. 1. 长安大学 公路学院,陕西 西安 710064;2. 福建省高速公路建设总指挥部,福建 福州 350001; 3. 莆田湄渝高速公路有限责任公司,福建 莆田 351100;4. 北京城建设计发展集团股份有限公司,北京 100037
  • 收稿日期:2017-03-15 出版日期:2017-06-22 发布日期:2018-06-05
  • 作者简介:叶飞,男,1977年生,博士,博士后,教授,硕士生导师,主要从事隧道及地下工程方面的研究工作。
  • 基金资助:

    国家自然科学基金面上项目(No. 51478044);国家自然科学基金面上项目(No. 51678062)。

Research on extrusion displacement of face and advanced core in tunnel with weak surrounding rock

YE Fei1, SONG Jing1, TANG Yong-san2, LIN Jian-fei3, JIA Tao4   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. Fujian Expressway Construction Headquarters, Fuzhou, Fujian 350001, China; 3. Putian Meiyu Expressway Co., Ltd., Putian , Fujian 351100, China; 4. Beijing Urban Construction Design & Development Group Co., Ltd., Beijing 100037, China
  • Received:2017-03-15 Online:2017-06-22 Published:2018-06-05
  • Supported by:

    This work is supported by the National Natural Science Foundation for Surface Project of China (51478044) and National Natural Science Foundation for Surface Project of China (51678062).

摘要: 为研究软弱围岩隧道掌子面及超前核心土的挤出位移特征,用Solexperts AG公司生产的GMD滑动测微计对湄渝高速岐山隧道F215构造破碎带区域进行了挤出位移实测,通过有限差分程序进行系列数值试验,着重研究了隧道穿越软弱围岩期间挤出位移的变化特征,并分析了破碎带长度和硬软岩刚度比的影响。结果表明,(1)挤出位移的大小可反映前方围岩质量,挤出位移在超前核心土内的分布可反映前方围岩的节理裂隙发育情况;(2)隧道开挖在掌子面前方造成的扰动范围大致为1.5倍的隧道开挖跨度;(3)隧道接近前方变化地质区域时,挤出位移的增大或减小具有超前性;(4)软岩段长度在一定范围内会影响掌子面进入软岩区后挤出位移的大小和变化趋势;(5)硬岩与软岩间的刚度比越大,挤出位移变化速率越大,且隧道由软岩区向硬岩区掘进时挤出位移的变化时机越早,而由硬岩区向软岩区掘进时的变化时机不受刚度比影响;(6)可将对挤出位移的监测分析作为超前地质预报的补充手段判断掌子面前方围岩情况。

关键词: 隧道, 软弱围岩, 岩土控制变形分析法, 挤出位移, 滑动测微计, 现场实测, 数值计算

Abstract: In order to investigate the characteristics of extrusion displacement in the tunnel face and advanced core in tunnel with weak surrounding rock, the extrusion displacement of the soft fault area F215 in the left line of Qishan tunnel in Fujian province is measured with the GMD sliding micrometers produced by Solexperts AG Company. A series of numerical simulations are carried out with finite difference program to study the characteristics of extrusion displacement during the time tunnel passes through the weak rock zone; and the influence of the length of weak rock zone and the stiffness ratio of hard rock to weak rock are analyzed. The results show that: (1) The magnitude of extrusion displacement can reflect the quality of the surrounding rock of the advanced core, while the distribution of extrusion displacement in advanced core can reflect the condition of joint crack ahead of the tunnel face. (2) The range of disturbance in front of the tunnel face caused by excavation are around 1.5 times as long as the excavation span of the tunnel. (3) The extrusion displacement is able to increase or decrease in advance before the tunnel face approaches the area where the surrounding rock is changed. (4) When the tunnel face enters into weak rock zone from hard rock zone, the length of weak rock zone can affect the magnitude and the change trend of extrusion displacement in some extent. (5) The bigger the stiffness ratio of hard rock to weak rock, the faster the rate of extrusion displacement change increases; and the earlier the extrusion change occurs when the tunnel face approaches from hard rock zone to weak rock zone, while there is no difference when the tunnel face approaches from weak rock zone to hard rock zone. (6) The monitoring and analysis of extrusion displacement can be a supplementary method of advance geological forecast to distinguish the condition of surrounding rock ahead of the tunnel face.

Key words: tunnel, weak surrounding rock, analysis of controlled deformation in rocks and soils (ADECO-RS), extrusion displacement, sliding micrometers, field monitoring, numerical calculation

中图分类号: 

  • U 452

[1] 徐日庆, 程康, 应宏伟, 林存刚, 梁荣柱, 冯苏阳, . 考虑埋深与剪切效应的基坑卸荷下卧 隧道的形变响应[J]. 岩土力学, 2020, 41(S1): 195-207.
[2] 郑刚, 栗晴瀚, 程雪松, 哈达, 赵悦镔. 承压层快速减压与回灌应用于隧道抢险的理论与设计[J]. 岩土力学, 2020, 41(S1): 208-216.
[3] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[4] 房昱纬, 吴振君, 盛谦, 汤华, 梁栋才, . 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503.
[5] 刘争宏, 张龙, 郑建国, 张炜, 于永堂, . 滑动测微管抗渗能力的测试装置及试验研究[J]. 岩土力学, 2020, 41(7): 2504-2515.
[6] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[7] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[8] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[9] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[10] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[11] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[12] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[13] 郑立夫, 高永涛, 周喻, 田书广. 基于流固耦合理论水下隧道冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(3): 1029-1038.
[14] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[15] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!