›› 2017, Vol. 38 ›› Issue (10): 2841-2846.doi: 10.16285/j.rsm.2017.10.009

• 基础理论与实验研究 • 上一篇    下一篇

含层理砂岩热膨胀系数的试验研究

刘海涛1, 2,周 辉1, 2,胡大伟1, 2,张传庆1, 2,渠成堃1, 2,汤艳春3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 三峡大学 土木与建筑学院,湖北 宜昌 443002
  • 收稿日期:2016-05-08 出版日期:2017-10-10 发布日期:2018-06-05
  • 通讯作者: 周辉,男,1972年生,博士,研究员,主要从事岩石力学试验、理论、数值分析与工程安全性分析方面的研究。E-mail: hzhou@whrsm.ac.cn E-mail: liuhaitaozky@163.com
  • 作者简介:刘海涛,男,1990年生,博士研究生,主要从事岩石力学试验、数值分析计算研究。
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2014CB046902);国家自然科学基金项目(No. 51427803,No. 51404240,No. 51479193);中国科学院“百人计划”项目。

Experiment study of thermal expansion coefficient of sandstone with beddings

LIU Hai-tao1, 2, ZHOU Hui1, 2, HU Da-wei1, 2, ZHANG Chuan-qing1, 2, QU Cheng-kun1, 2, TANG Yan-chun3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. College of Civil Engineering and Architecture, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2016-05-08 Online:2017-10-10 Published:2018-06-05
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program)(2014CB046902), the National Natural Science Foundation of China (51427803, 51404240, 51479193) and the “100 Talent Program” of the Chinese Academy of Sciences.

摘要: 在放射性核废料处置、地热能源开采以及地下油气储存等工程中,热量的传递将会在很大程度上改变岩土材料的力学性质,因此,岩土体及缓冲材料的热力学参数,包括热传导系数、热膨胀系数、比热容对工程设计以及安全性评价有着至关重要的作用。利用自主研制的岩石膨胀系数测试仪对含层理砂岩进行了热膨胀系数试验,研究了岩石轴向和径向热膨胀系数的变化规律,结果表明:对于含水平层理岩样,随着温度的变化,当膨胀均匀后,轴向热膨胀系数约为14×10-6 ℃-1,而径向热膨胀系数约为9×10-6 ℃-1,前者约为后者的1.56倍,表现出明显的各向异性;相比于含水平层理岩样,含竖直或倾斜层理岩样的轴向膨胀系数未见显著差异,但径向热膨胀系数明显增加;相同温度下,径向热膨胀系数从大到小的顺序为:竖直方向、倾斜方向和水平方向;由于岩样中沉积层的存在,砂岩与沉积物质的膨胀性能并不相同,这将导致岩样的轴向和径向热膨胀系数表现出各向异性。该研究成果对于岩体的热-力耦合特性研究具有一定的参考意义。

关键词: 温度, 砂岩, 热膨胀系数, 试验研究

Abstract: Heat transportation will change the mechanical properties of rock and soil materials considerably in subsurface engineering applications such as radioactive waste repositories, geothermal energy extraction and underground oil/gas storage. Thermal properties of rocks, soils and buffer materials, including thermal conductivity, thermal expansion coefficient, specific heat capacity, play a crucial role in design and evaluation of safety performance of these projects. The thermal expansion coefficient tests are conducted on sandstone with bedding planes by using the independently developed instrument for thermal expansion coefficient of rocks. The evolution of axial and radial thermal expansion coefficients of rocks are studied. The results show that for rock samples with horizontal beddings, with the change of temperature, axial thermal expansion coefficient is about 14×10?6 ℃?1, while about 9×10?6 ℃?1 in radial direction under uniform expansion. The axial thermal expansion coefficient is about 1.56 times as large as the radial thermal expansion coefficient, and the rock sample shows obvious anisotropy. Compared with rock samples with horizontal beddings, the samples with inclined and vertical beddings shows no significant difference in axial thermal expansion coefficient, but their radial thermal expansion coefficients are larger. Under the same temperature, the order of radial expansion coefficient from big to small is vertical, inclined and horizontal beddings. Because of the existence of beddings, the expansion properties of sandstone and compositions of beddings are different, which leads to the difference of axial and radial expansion coefficients. The results may provide a helpful reference for better understanding the thermo-mechanical behaviors of rocks.

Key words: temperature, sandstone, thermal expansion coefficient, experiment study

中图分类号: 

  • TU 458

[1] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[2] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[3] 周翠英, 梁彦豪, 刘春辉, 刘镇, . 天然红层风化土成膜试验研究[J]. 岩土力学, 2020, 41(S1): 132-138.
[4] 徐衍, 周晓敏, 和晓楠, 吴涛, 张建岭, 李森. 矿山竖井井壁与围岩热−固耦合作用分析[J]. 岩土力学, 2020, 41(S1): 217-226.
[5] 周祥运, 孙德安, 罗汀. 核废料处置库近场温度半解析研究[J]. 岩土力学, 2020, 41(S1): 246-254.
[6] 褚峰, 张宏刚, 邵生俊, 邓国华. 人工合成类废布料纤维纱加筋黄土力学变形性质及抗溅蚀特性试验研究[J]. 岩土力学, 2020, 41(S1): 394-403.
[7] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[8] 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240.
[9] 骆赵刚, 汪时机, 杨振北, . 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323.
[10] 张庆艳, 陈卫忠, 袁敬强, 刘奇, 荣驰, . 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1922.
[11] 胡田飞, 王天亮, 常键, 刘建勇, 卢玉婷, . 基于有限体积法的冻土水热耦合程序开发及验证[J]. 岩土力学, 2020, 41(5): 1781-1789.
[12] 韩超, 庞德朋, 李德建. 砂岩分级加卸载蠕变试验过程能量演化分析[J]. 岩土力学, 2020, 41(4): 1179-1188.
[13] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[14] 李斌, 黄 达, 马文著, . 层理面特性对砂岩断裂力学行为的影响研究[J]. 岩土力学, 2020, 41(3): 858-868.
[15] 张宗堂, 高文华, 张志敏, 唐骁宇, 邬俊, . 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 2020, 41(3): 877-885.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!