›› 2017, Vol. 38 ›› Issue (10): 2980-2988.doi: 10.16285/j.rsm.2017.10.027

• 岩土工程研究 • 上一篇    下一篇

不同埋深砂土盾构隧道掘进开挖面前方土拱效应研究

孙潇昊,缪林昌,林海山   

  1. 东南大学 岩土工程研究所,江苏 南京 210096
  • 收稿日期:2016-09-10 出版日期:2017-10-10 发布日期:2018-06-05
  • 通讯作者: 缪林昌,男,1961年生,教授,博士,博士生导师,主要隧道与地下工程研究。E-mail: Lc.miao@seu.edu.cn E-mail:sunxiao14hao@126.com
  • 作者简介:孙潇昊,男,1993年生,博士,主要从事隧道地铁的研究工作
  • 基金资助:

    国家自然科学基金项目(No. 51578147)。

Arching effect of soil ahead of working face in shield tunnel in sand with various depths

SUN Xiao-hao, MIAO Lin-chang, LIN Hai-shan   

  1. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2016-09-10 Online:2017-10-10 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51578147).

摘要: 盾构施工过程中,开挖面前方土拱效应与掌子面盾构机推力大小和埋深密切相关。通过室内模型试验,研究不同砂土密度和不同隧道埋深条件下,盾构开挖面前方土拱效应,分析了砂土颗粒位移变化模式和土拱发展的时变特征,并揭示了不同埋深下土拱的发展规律和对失稳破坏机制的影响;同时基于室内模型试验,采用颗粒流程序进行模拟,从细观角度进一步研究了土拱效应。结果表明:不同埋深条件下,土拱发展规律一致且与支护力大小,地表沉降密切相关;低密度时土体破坏模式呈漏斗状,高密度为条带状,且土拱范围随埋深比增大而增大;颗粒流模拟得到不同埋深条件下,颗粒接触力、孔隙率和平均土压力变化规律一致。最后得出室内试验和PFC2D颗粒流模拟得到的土拱效应相似的结论。

关键词: 土拱效应, 不同埋深, 砂土, 隧道掘进, 模型箱试验, 颗粒流

Abstract: The soil arching effect is closely related to the supporting force and depths during tunneling construction. The soil arching effect was studied experimentally considering various depths of embedded tunnel and densities of the sand layer. The displacement of sand particles and development of soil arching near the face of excavation were analyzed. The development of soil arching and the its failure under various depths were revealed. Comparing with the laboratory tests, the two-dimensional particle flow code (PFC2D) was employed to simulate the soil arching effect. The results show that the development of soil arching under different depths are the same, closely related to the supporting force and the ground settlement. The failure of soil shows funnel shape at low density , and strip shape at high density. The range of soil arching increases with the increase of depths. The change of particle contact force, porosity and average soil pressure are the same via PFC2D simulation for various depths. Finally, the conclusion is drawn that the soil arching effect obtained from the laboratory tests is similar to that of PFC2D simulation.

Key words: soil arching effect, different depths, sand, tunneling, model box test, particle flow code

中图分类号: 

  • TU 443

[1] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[2] 卞康, 陈彦安, 刘建, 崔德山, 李一冉, 梁文迪, 韩啸. 不同吸水时间下页岩卸荷破坏特征的 颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
[3] 毛家骅, 袁大军, 杨将晓, 张兵, . 砂土地层泥水盾构开挖面孔隙变化特征理论研究[J]. 岩土力学, 2020, 41(7): 2283-2292.
[4] 刘克奇, 丁万涛, 陈瑞, 侯铭垒, . 盾构掌子面三维破坏模型构建与极限支护力计算[J]. 岩土力学, 2020, 41(7): 2293-2303.
[5] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[6] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[7] 孙静, 公茂盛, 熊宏强, 甘霖睿, . 冻融循环对粉砂土动力特性影响的试验研究[J]. 岩土力学, 2020, 41(3): 747-754.
[8] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[9] 黄宇华, 徐林荣, 周俊杰, 蔡雨, . 基于改进Terzarghi方法的桩网地基桩土应力计算[J]. 岩土力学, 2020, 41(2): 667-675.
[10] 覃玉兰, 邹新军, 曹雄. 均质砂土中水平简谐荷载与扭矩联合 受荷单桩内力、位移分析[J]. 岩土力学, 2020, 41(1): 147-156.
[11] 孔亮, 刘文卓, 袁庆盟, 董彤, . 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 2019, 40(9): 3319-3326.
[12] 芮 瑞, 叶雨秋, 陈 成, 涂树杰. 考虑墙壁摩擦影响的挡土墙 主动土压力非线性分布研究[J]. 岩土力学, 2019, 40(5): 1797-1804.
[13] 孙逸飞, 陈 成, . 无状态变量的状态依赖剪胀方程及其本构模型[J]. 岩土力学, 2019, 40(5): 1813-1822.
[14] 陈 峥, 何 平, 颜杜民, 高红杰, . 考虑土拱效应的管棚合理间距计算方法[J]. 岩土力学, 2019, 40(5): 1993-2000.
[15] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!