›› 2017, Vol. 38 ›› Issue (11): 3197-3204.doi: 10.16285/j.rsm.2017.11.015

• 基础理论与实验研究 • 上一篇    下一篇

基于两能态吸附热理论的煤层瓦斯流动热-流-固多场耦合模型

舒 才1,王宏图1,施 峰1,胡国忠2   

  1. 1. 重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400044;2. 中国矿业大学 矿业工程学院,江苏 徐州 221116
  • 收稿日期:2016-02-01 出版日期:2017-11-10 发布日期:2018-06-05
  • 通讯作者: 王宏图,男,1959年生,教授,博士生导师。E-mail:htwang@cqu.edu.cn
  • 作者简介:舒才,男,1985年生,博士研究生,主要从事矿业工程方面的研究工作。
  • 基金资助:

    煤矿灾害动力学与控制国家重点实验室项目(No. DA201404);国家自然科学基金(No. 51104155)。

A fully coupled thermal-hydrological-mechanical model for gas seepage based on binary-energy-state heat theory

SHU Cai1, WANG Hong-tu1, SHI Feng1, HU Guo-zhong 2   

  1. 1. State Key Laboratory of Coal Mine Disaster dynamic and Control, Chongqing University, Chongqing 400044, China; 2. School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2016-02-01 Online:2017-11-10 Published:2018-06-05
  • Supported by:

    This work was supported by the Projects of State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University (DA201404) and the National Natural Science Foundation of China (51104155).

摘要: 为了研究煤层瓦斯流动过程中温度与渗流场和应力场的耦合作用变化规律,引入煤层瓦斯两能态吸附热理论,重新构建煤层温度场控制方程,推导了温度场控制方程中解吸微分热能项的理论求解方法,改进了煤层瓦斯流动的热-流-固多场耦合数学模型;从理论上阐述了煤层瓦斯流动过程中吸附解吸、应力场、温度场、渗流场相互影响的作用机制;利用该模型研究了煤层瓦斯抽采过程中煤层瓦斯流动时的煤层温度、瓦斯压力、煤层渗透率的变化规律;结合已有试验研究结果,对比验证了模型的精确性和合理性;研究结果表明,在煤层瓦斯抽采过程中,煤层温度下降的快、慢受煤层原始瓦斯含量和压力及煤层渗透率的共同影响,煤层渗透率越大,温度下降越快,煤层瓦斯压力和含量越大,温度下降越快;同时,煤层渗透率随抽采时间的增长而增加,越靠近钻孔壁面煤层渗透率增加幅度越大。

关键词: 温度场, 煤层瓦斯, 瓦斯渗流, 热-流-固耦合模型

Abstract: To investigate the coupling effect among coal seam temperature, gas seepage field and stress field, a temperature field controlling equation was reestablished by employing binary-energy-state theory in coal gas flow. Then, the theoretical solution of desorption differential heat term in the equation was derived as well. Finally, a fully coupled thermal-hydrological-mechanical (THM) model was improved. Based on the improved THM model, this study discussed complex interactions among adsorption, desorption, stress field, temperature field and seepage field in coal gas flow. Moreover, the THM model was used to investigate the changes of temperature, gas pressure and permeability of coal seam during gas drainage. The model results showed good agreement with the results from previous experimental studies. The results indicated that the drop-down rate of coal seam temperature was controlled by the combined effect of the original gas content, pore pressure and permeability of coal seam during gas drainage. It means that the greater the permeability of the coal seam is, the faster the dropdown rate of the temperature is. The greater the coal seam gas content and gas pressure are, the faster the temperature drops. Meanwhile, the permeability of coal seam increased with the elapsed time of drainage and the amplitude of the increase declined with the increase of the distance from borehole axis along the radial direction.

Key words: temperature field, coal bed methane, gas seepage, thermal-hydrological-mechanical coupled model

中图分类号: 

  • TD 713

[1] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[2] 周祥运, 孙德安, 罗汀. 核废料处置库近场温度半解析研究[J]. 岩土力学, 2020, 41(S1): 246-254.
[3] 刘伟俊, 张晋勋, 单仁亮, 杨昊, 梁辰, . 渗流作用下北京砂卵石地层多排管局部 水平冻结体温度场试验[J]. 岩土力学, 2019, 40(9): 3425-3434.
[4] 张沛然,黄雪峰,杨校辉,刘自龙,朱中华,. 盐渍土水-热场耦合效应与盐胀变形试验[J]. , 2018, 39(5): 1619-1624.
[5] 张玉伟,谢永利,李又云,赖金星,. 基于温度场时空分布特征的寒区隧道冻胀模型[J]. , 2018, 39(5): 1625-1632.
[6] 任建喜,孙杰龙,张 琨,王 江,王东星. 富水砂层斜井冻结壁力学特性及温度场研究[J]. , 2017, 38(5): 1405-1412.
[7] 石荣剑,岳丰田,张 勇,陆 路, . 盾构地中对接冻结加固模型试验(Ⅰ) ——冻结过程中地层冻结温度场的分布特征[J]. , 2017, 38(2): 368-376.
[8] 王 刚,李文鑫,杜文州,王海洋,王鹏飞,孙文斌,. 变轴压加载煤体变形破坏及瓦斯渗流试验研究[J]. , 2016, 37(S1): 175-182.
[9] 申艳军,杨更社,荣腾龙,刘 慧. 低温环境下含表面裂隙硬岩温度场及冻胀演化过程分析[J]. , 2016, 37(S1): 521-529.
[10] 李文鑫,王 刚, 杜文州,王鹏飞,陈金华,孙文斌,. 真三轴气固耦合煤体渗流试验系统的研制及应用[J]. , 2016, 37(7): 2109-2118.
[11] 田宝柱 ,刘善军 ,张艳博 ,梁 鹏 ,刘祥鑫 , . 花岗岩巷道岩爆过程红外辐射时空演化特征室内模拟试验研究[J]. , 2016, 37(3): 711-718.
[12] 薛娈鸾 , . 裂隙岩体不稳定温度场的复合单元算法研究[J]. , 2015, 36(7): 2088-2094.
[13] 黄 旭 ,孔纲强 ,刘汉龙 ,吴宏伟,. 循环温度场作用下PCC能量桩热力学特性模型试验研究[J]. , 2015, 36(3): 667-673.
[14] 胡 俊 ,杨 平,. 大直径杯型冻土壁温度场数值分析[J]. , 2015, 36(2): 523-531.
[15] 吴志伟 ,宋汉周,. 基于流-热耦合模型的土石坝渗流热监测研究[J]. , 2015, 36(2): 584-590.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!