›› 2017, Vol. 38 ›› Issue (12): 3469-3475.doi: 10.16285/j.rsm.2017.12.010

• 基础理论与实验研究 • 上一篇    下一篇

多年冻土区缓倾角土层斜坡的地震反应

张开健1, 2,孙 红1, 2,牛富俊2,葛修润1   

  1. 1. 上海交通大学 船舶海洋与建筑工程学院,上海 200240; 2. 中国科学院寒区旱区环境与工程研究所 冻土工程国家重点试验室,甘肃 兰州 730000
  • 收稿日期:2015-12-28 出版日期:2017-12-11 发布日期:2018-06-05
  • 通讯作者: 孙红,女,1970年生,博士,副教授,主要从事岩土力学与岩土工程数值模拟方面的研究工作。E-mail: sunhong@sjtu.edu.cn E-mail: zkj666@sjtu.edu.cn
  • 作者简介:张开健,男,1989年生,硕士研究生,主要从事边坡失稳方面的研究工作。
  • 基金资助:

    国家自然科学基金项目(No.41572255);国家973重点项目(No.2012CB026101,No.2011CB013505);冻土工程国家重点试验室开放基金(No.SKLFSE201209)。

Seismic response of low-angle soil slope in permafrost regions

ZHANG Kai-jian1, 2, SUN Hong1, 2, NIU Fu-jun2, GE Xiu-run1   

  1. 1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China; 2. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2015-12-28 Online:2017-12-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41572255), the Major State Basic Research Development Program of China (2012CB026101, 2011CB013505) and the State Key Laboratory of Frozen Soil Engineering Foundation (SKLFSE201209).

摘要: 进行垂直和水平动荷载下的大型振动台模型试验,研究地震作用下多年冻土缓倾角土层斜坡的地震响应、诱发滑坡破坏的主要影响因素及滑坡破坏的演化过程。结果表明,在土层坡度为8°缓斜坡振动台模型试验条件下,斜坡模型破坏后其水平方向自振频率降低较明显,而垂直方向无明显变化;坡体滑动是整体沿着冰-土界面软弱层进行的失稳滑动,沿斜面滑下的斜坡土体内部没有发生破坏;模型斜坡的峰值加速度(PGA)放大系数随着坡体高程增加而增大,破坏前坡面PGA放大系数无明显变化,破坏时和破坏后变化较明显,斜坡土体对水平方向地震波的加速度动力放大响应大于垂直方向,冰-土界面软弱层的加速度放大系数明显小于上部土体和下部冰体,在加速度达到一定数值时,冰-土界面的孔隙水压力会升高。斜坡冰-土软弱界面和超孔隙水压力升高是地震荷载下多年冻土区缓倾角土层斜坡滑动的主要内因。

关键词: 青藏高原, 多年冻土, 低倾角土坡, 滑坡机制, 振动台, 模型试验

Abstract: Large shaking table model tests were conducted to investigate the seismic response of low-angle soil slope in permafrost regions, main influencing factors and the evolution process of the landslide subjected to vertical and horizontal seismic loadings, respectively. When shaking table tests were conducted on the 8°low-angle slope, the horizontal natural frequency of vibration decreased sharply at the failure state, however there was no apparent change in the vertical direction. The failure of slope model was characterised by completely slipping along the interface between the unfrozen soil and ice layer, while the deformation of soil was not observed inside the sliding body. The amplification coefficients of peak ground acceleration (PGA) increased with the elevation of the slope. Compared with little change of amplification coefficients before sliding, more obvious changes occurred along the surface of the slope after sliding. The peak amplification coefficient subjected to the horizontal seismic loading was greater than that subjected to the vertical one. The peak amplification coefficient in the soil-ice interface was obviously lower than that in the upper soil and lower ice layer. The pore water pressure in the soil-ice interface of the slope increased when the input acceleration reached a specific value. The weak soil-ice interface and the increasing pore water pressure were the main internal factors inducing the permafrost landslide subjected to seismic loading.

Key words: Qinghai-Tibet Plateau, permafrost, low-angle soil slope, landslide mechanism, shaking table, model test

中图分类号: 

  • TU 445

[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[3] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 基于自由场大型振动台试验的饱和砂土 固-液相变特征研究[J]. 岩土力学, 2020, 41(7): 2189-2198.
[4] 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223.
[5] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[6] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[7] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[8] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[9] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[10] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[11] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[12] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[13] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[14] 张明礼, 温智, 董建华, 王得楷, 岳国栋, 王斌, 高樯. 考虑降雨作用的多年冻土区不同地表土质 活动层水热过程差异分析[J]. 岩土力学, 2020, 41(5): 1549-1559.
[15] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!