›› 2017, Vol. 38 ›› Issue (S2): 67-74.doi: 10.16285/j.rsm.2017.S2.009

• 基础理论与实验研究 • 上一篇    下一篇

基于未冻水含量的冻土热参数计算分析

陈之祥1,2,李顺群1,2,夏锦红3,张勋程2,桂 超3   

  1. 1.科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 天津市软土特性与工程环境重点实验室,天津 300384;3. 新乡学院 土木工程与建筑学院,河南 新乡 453003
  • 收稿日期:2017-06-15 出版日期:2017-11-23 发布日期:2018-06-05
  • 通讯作者: 李顺群,男,1971年生,博士后,教授,主要从事土力学和基础工程领域的教学和研究工作。E-mail:lishunqun@yeah.net E-mail:chen_zhixiang@126.com
  • 作者简介:陈之祥,男,1990年生,硕士研究生,主要从事环境岩土工程方面的研究。
  • 基金资助:

    岩土力学与工程国家重点实验室资助课题(No. z013002);国家自然科学基金(No. 41472253);天津市自然科学基金重点项目(No. 16JCZDJC39000);天津市建设系统科学技术项目发展计划(No. 2016-25)。

Calculation of frozen soil thermal parameters considering unfrozen water content

CHEN Zhi-xiang1, 2, LI Shun-qun1, 2, XIA Jin-hong3, ZHANG Xun-cheng2, GUI Chao3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Indtitute Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; 2. Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin 300384, China; 3. School of Civil Engineering and Architecture, Xinxiang University, Xinxiang, Henan 453003, China
  • Received:2017-06-15 Online:2017-11-23 Published:2018-06-05
  • Supported by:

    This work was supported by the Open Research Fund of State Key Laboratory Geomechanics and Geotechnical Engineering Institute of Rock and Soil Mechanics, Chinese Academy of Sciences(z013002) the National Natural Science Foundation of China(41472253), Key Project of Natural Science Foundation of Tianjin City (16JCZDJC39000), and Tianjin Construction System Science and Technology Project Development Plan(2016-25).

摘要: 为提升冻土温度场预测精度和减少热参数测试工作量,根据饱和冻土的土、水、冰三相组成,对基于导热系数的冻土未冻水含量反演公式进行了推导。根依据干土和饱和土体的二相构成,推导了适用于土体矿物导热系数预估的计算公式。实测了粉质黏土在不同负温下的比热和导热系数值,分别结合比热确定未冻水含量的递推方法和基于导热系数建立的冻土未冻水含量反演公式,计算得到了粉质黏土在不同负温下的未冻水含量。基于实测和反演获取的未冻水含量,确定了随不同负温变化的冻土导热系数、比热和潜热。将基于冻土未冻水含量确定的热参数代入数值计算软件ABAQUS,获取不同计算热参数下的冻土瞬态温度场计算值。分别将各温度场计算值与模型试验实测值进行了比较,结果表明,从未冻水含量角度出发对冻土温度场计算用热参数的测试工作量进行缩减是可行的;基于Johansen法反演获取未冻水含量,进而确定的热参数能够较好地预测冻土温度场。

关键词: 冻土, 热参数, 导热系数, 比热, 未冻水

Abstract: In order to improve the prediction accuracy of frozen soil temperature field and reduce the testing work load of thermal parameter, the inversion formula of unfrozen water content is deduced based on the thermal conductivity and the three-phase composition of soil, water and ice in saturated frozen soil. According to the two-phase structure of dry soil or saturated soil, a formula for predicting thermal conductivity of soil minerals is derived. The specific heat and thermal conductivity of silty clay are measured at different negative temperatures; and the unfrozen water contents of silty clay under different negative temperatures are calculated respectively through the recurrence method for unfrozen water content by specific heat and the inversion formula for unfrozen water content by thermal conductivity established in this paper. The thermal conductivity, specific heat and latent heat of frozen soil at different negative temperatures are determined based on the measured and inversed values of unfrozen water content. The thermal parameters calculated by the unfrozen water content are entered into ABAQUS; and the calculated values of frozen soil temperature field with different thermal parameters are obtained. The calculated values of each temperature field are compared with the measured values of the model test. The results show that the reducing testing work load of thermal parameters is feasible from the viewpoint of the unfrozen water content of frozen soil; and the thermal parameters obtained from the inversion of unfrozen water content based on the Johansen method can better predict the frozen soil temperature field.

Key words: frozen soil, thermal parameters, thermal conductivity, specific heat, unfrozen water

中图分类号: 

  • TU445

[1] 张明礼, 温智, 董建华, 王得楷, 岳国栋, 王斌, 高樯. 考虑降雨作用的多年冻土区不同地表土质 活动层水热过程差异分析[J]. 岩土力学, 2020, 41(5): 1549-1559.
[2] 胡田飞, 王天亮, 常键, 刘建勇, 卢玉婷, . 基于有限体积法的冻土水热耦合程序开发及验证[J]. 岩土力学, 2020, 41(5): 1781-1789.
[3] 孟祥传, 周家作, 韦昌富, 张坤, 沈正艳, 杨周洁, . 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960.
[4] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[5] 王青志, 房建宏, 晁刚. 高温冻土地区高等级公路片块石路基降温效果分析[J]. 岩土力学, 2020, 41(1): 305-314.
[6] 谈云志, 彭帆, 钱芳红, 孙德安, 明华军, . 石墨−膨润土缓冲材料的最优配置方法[J]. 岩土力学, 2019, 40(9): 3387-3396.
[7] 王宏磊, 孙志忠, 刘永智, 武贵龙, . 青藏铁路含融化夹层路基热力响应监测分析[J]. 岩土力学, 2019, 40(7): 2815-2824.
[8] 张明礼, 温 智, 董建华, 王得楷, 侯彦东, 王 斌, 郭宗云, 魏浩田, . 考虑降雨作用的气温升高对多年冻土 活动层水热影响机制[J]. 岩土力学, 2019, 40(5): 1983-1993.
[9] 靳 潇, 杨 文, 孟宪红, 雷乐乐, . 基于双电层模型冻土中未冻水含量理论推演及应用[J]. 岩土力学, 2019, 40(4): 1449-1456.
[10] 李 鑫, 刘恩龙, 侯 丰, . 考虑温度影响的冻土蠕变本构模型[J]. 岩土力学, 2019, 40(2): 624-631.
[11] 宋宏芳, 岳祖润, 李佰林, 张松, . 季节冻土区高速铁路防冻胀路基保温强化特性研究[J]. 岩土力学, 2019, 40(10): 4041-4048.
[12] 高 樯,温 智,王大雁,牛富俊,谢艳丽,苟廷韬,. 基于冻融交界面直剪试验的冻土斜坡失稳过程研究[J]. , 2018, 39(8): 2814-2822.
[13] 谢敬礼,马利科,高玉峰,曹胜飞,刘月妙. 北山花岗岩岩屑-膨润土混合材料导热性能研究[J]. , 2018, 39(8): 2823-2828.
[14] 石泉彬,杨 平,于 可,汤国毅,. 冻土与结构接触面次峰值冻结强度试验研究[J]. , 2018, 39(6): 2025-2034.
[15] 张 晨,蔡正银,徐光明,黄英豪,. 冻土离心模型试验相似准则分析[J]. , 2018, 39(4): 1236-1244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!