›› 2017, Vol. 38 ›› Issue (S2): 337-348.doi: 10.16285/j.rsm.2017.S2.047

• 基础理论与实验研究 • 上一篇    下一篇

基于有限元/离散元耦合分析方法的含预制裂隙圆形孔洞试样破坏特性数值分析

冯 帆,李夕兵,李地元,陈 冲   

  1. 中南大学 资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2017-02-09 出版日期:2017-11-23 发布日期:2018-06-05
  • 通讯作者: 李地元,男,1981年生,博士,副教授, 主要从事深部岩石力学和深部硬岩工程方面的教学与研究工作。E-mail:diyuan.li@csu.edu.cn E-mail:fengfan0213@126.com
  • 作者简介:冯帆,男,1990年生,博士研究生,主要从事岩石力学试验与数值模拟等方面的研究工作。
  • 基金资助:

    国家重点研发计划项目(No. 2016YFC0600706);国家自然科学基金项目(No. 51474250)。

Numerical analysis of failure characteristics of circular hole specimen containing pre-existing flaw based on finite/discrete elements

FENG Fan, LI Xi-bing, LI Di-yuan, CHEN Chong   

  1. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
  • Received:2017-02-09 Online:2017-11-23 Published:2018-06-05
  • Supported by:

    This work was supported by the State Key Research Development Program of China((2016YFC0600706) and the National Natural Science Foundation of China(51474250).

摘要: 为了揭示结构面作用下深埋高应力硐室围岩的破坏机制,采用有限元/离散元耦合分析方法(FDEM)对含预制裂隙圆形孔洞硬岩试样建立数值模型,研究不同预制裂隙(结构面)位置、长度以及倾角下试样孔洞周边裂纹扩展规律及其力学破坏特性,针对各种情况提出了相应的支护措施。研究发现,(1) 在无预制裂隙作用条件下圆形孔洞顶底部首先出现张拉裂纹,随后在孔洞两侧相继出现劈裂裂纹并逐渐贯通,近似于开挖面附近的板裂化破坏;(2) 若洞壁一侧存在已揭露裂隙该侧岩体整体呈剪切滑移型破坏, 若洞壁一侧存在未揭露裂隙该侧岩体的破坏模式为张拉–剪切型破坏,未揭露预制裂隙试样的破坏程度更为剧烈且更容易诱发岩爆;(3) 对于孔洞上方的预制裂隙,无论揭露与否最终都会产生局部性顶板垮落或崩塌;(4) 随着预制裂隙长度的增加,圆形孔洞上方岩体由短裂隙时的局部性垮塌最终转变为全局式垮塌;(5) 对于孔洞一侧预制裂隙,试样破坏过程所释放的动能(破坏程度)随裂隙倾角的增加呈现先增大后降低的趋势,对于孔洞顶部预制裂隙,试样的破坏剧烈程度随裂隙倾角的增加呈现单调递增趋势。研究结果可为含裂隙或断层岩体地下工程开挖、支护设计及其稳定性分析提供指导。

关键词: 有限元/离散元耦合分析方法(FDEM), 圆形孔洞, 预制裂隙, 结构面效应, 岩爆, 数值模拟

Abstract: In order to reveal the failure mechanisms of the surrounding rock near caverns considering the influence of structural surface in deep highly-stressed condition, a finite/discrete element method combined approach is adopted to establish the numerical models of circular hole specimen containing pre-existing flaw, with particularly attention paid to the mechanical failure characteristics and the crack growth behaviors around the circular hole under the condition of different locations, lengths and dip angles of pre-existing flaw. A series of targeted supporting measures are put forward for each case. Research results show that (1) For the specimen without pre-existing flaw, extensional cracks will appear on the top and bottom of the hole primarily; then the splitting cracks will gradually emerge and coalesce on both sides of circular hole subsequently, which is similar to the slabbing failure near excavation boundaries. (2) The rocks on this side will present the totally shear-slip failure if there exists exposed pre-existing flaw on either side of the circular hole. Contrarily, it will exhibit tension and shear failure if there exists unexposed pre-existing flaw on either side of the circular hole. The damage degree of specimens containing unexposed pre-existing flaw may be more serious and intense compared with those with exposed pre-existing flaw, and is more prone to induce rockburst. (3) For those flaws where are located on top of circular hole, whether the flaws are exposed or not, the rockmass will present a local caving or collapse eventually. (4) With the increasing length of pre-existing flaw, the failure mode of upper rockmass will be transforming from local caving to global collapse eventually. (5) If the pre-existing flaw is on either side of circular hole, the released kinetic energy(damage degree) during failure process will present the tendency of increase firstly and decrease subsequently with the increasing dip angle of flaw, However, for the condition of pre-existing flaw located on top of circular hole, the damage degree of specimen will be the most intense and serious only when the dip angle of pre-existing flaw reaches 60º. Research results may provide guidance for engineering excavation, support design and stability analysis of rockmass containing flaws and faults.

Key words: finite/discrete element method(FDEM), circular hole, pre-existing flaw, structure surface effect, rockburst, numerical simulation

中图分类号: 

  • TB115

[1] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[2] 陈炳瑞, 冯夏庭, 符启卿, 王搏, 朱新豪, 李涛, 陆菜平, 夏欢, . 综合集成高精度智能微震监测技术 及其在深部岩石工程中的应用[J]. 岩土力学, 2020, 41(7): 2422-2431.
[3] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[4] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[5] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[6] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[7] 田威, 王震, 张丽, 余宸, . 高温作用后3D打印岩体试样力学性能初探[J]. 岩土力学, 2020, 41(3): 961-969.
[8] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[9] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[10] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[11] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[12] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[13] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[14] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[15] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!