›› 2018, Vol. 39 ›› Issue (1): 103-111.doi: 10.16285/j.rsm.2016.0081

• 基础理论与实验研究 • 上一篇    下一篇

卸压区不同钻孔长度抽采条件下瓦斯运移特性试验

许 江1, 2,苏小鹏1, 2,彭守建1, 2,刘义鑫1, 2,冯 丹1, 2,刘龙荣1, 2   

  1. 1. 重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400044;2. 重庆大学 复杂煤气层瓦斯抽采国家地方联合工程实验室,重庆 400044
  • 收稿日期:2016-01-10 出版日期:2018-01-10 发布日期:2018-06-06
  • 作者简介:许江,男,1960年生,博士,教授,博士生导师,主要从事岩石力学与工程方面的教学与研究工作。
  • 基金资助:

    国家科技重大专项项目(No. 2016ZX05044002);国家自然科学基金(No. 51474040,No. 51434003)。

Test on gas migration characteristics during coal bed methane exploitation under different lengths of drilling hole in distressed zone

XU Jiang1, 2, SU Xiao-peng1, 2, PENG Shou-jian1, 2, LIU Yi-xin1, 2, FENG Dan1, 2, LIU Long-rong1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400044, China
  • Received:2016-01-10 Online:2018-01-10 Published:2018-06-06
  • Supported by:

    This work was supported by the National Science and Technology Major Project (2016ZX05044002) and the National Natural Science Foundation of China (51474040, 51434003).

摘要: 研究抽采过程中瓦斯运移特性有助于了解抽采气体来源、不同位置对抽采效果的贡献及抽采降压规律,为合理确定抽采时间、设计抽采位置和钻孔长度等提供依据。利用自主研发的多场耦合煤层气开采物理模拟试验系统,开展了卸压区不同钻孔长度条件下瓦斯抽采的物理模拟试验,分析了抽采过程中煤层瓦斯运移相对速度和方向特征。研究结果表明:抽采前期和钻孔周围区域分别是抽采量主要贡献时期和区域,瓦斯压力梯度大,流动快。卸压区瓦斯流动相对速度最快,应力集中区使得瓦斯相对流动速度衰减加速,且对原始区的瓦斯流动形成一道屏障,使其相对流动速度趋于0。随着抽采时间的增加,瓦斯相对流动速度逐渐衰减,对于瓦斯运移方向而言,抽采一旦开始便在煤层中形成了较为固定的运移通道,但在抽采后期和钻孔深部区域,由于瓦斯压力梯度小,流动缓慢,运移方向的不稳定性增强。而随着钻孔长度增加,卸压区内瓦斯相对流动速度表现出增大的趋势,因此,适当增大卸压区钻孔长度将有利于现场瓦斯开采。

关键词: 瓦斯抽采, 物理模拟, 瓦斯相对流动速度, 偏离角, 抽采时间, 钻孔长度

Abstract: The research on gas migration law during coal bed methane (CBM) exploitation is beneficial to understand the source of gas, impact of coal seam position on gas production and the law of gas pressure decay, thus providing foundation for design of exploitation time and the position and length of drilling hole. Using the multi-field coupling testing system for CBM exploitation developed by the authors, physical simulation experiments of CBM exploitation under different lengths of drilling hole in distressed zone were carried out, and relative gas flow speed and direction were analyzed. The results show that the initial stage of exploitation is the main contribution period to gas production and the surrounding area of drilling hole is the main contribution area to gas production, because gas pressure gradient is high and thus gas flows fast. Gas flow has the highest speed at the distressed zone. Existence of concentrated stress zone makes the relative flow speed attenuate quickly, and also creates a barrier to original stress zone, leading relative gas flow speed to be zero. Relative gas flow speed decreases with time while the migration direction does not change much because relatively stable seepage channels are formed at the beginning of exploitation. Due to gas pressure drop that leads gas pressure gradient and relative gas flow speed to decrease, the uncertainty of migration direction rises. With the length of drilling hole growing, the relative gas flow speed increases in the distressed zone, so it is meaningful to moderately lengthen the drilling hole.

Key words: CBM exploitation, physical simulation, relative gas flow speed, deviation angle, exploitation time, length of drilling hole

中图分类号: 

  • TD 325

[1] 彭守建, 郭世超, 许江, 郭臣业, 张超林, 贾立, . 采动诱导应力集中对顺层钻孔瓦斯抽采 影响的试验研究[J]. 岩土力学, 2019, 40(S1): 99-108.
[2] 许江, 宋肖徵, 彭守建, 张超林, 李奇贤, 张小蕾, . 顺层钻孔布置间距对煤层瓦斯抽采效果影响的 物理模拟试验研究[J]. 岩土力学, 2019, 40(12): 4581-4589.
[3] 赵建军,余建乐,解明礼,柴贺军,李 涛,步 凡,蔺 冰,. 降雨诱发填方路堤边坡变形机制物理模拟研究[J]. , 2018, 39(8): 2933-2940.
[4] 唐 然,许 强,吴 斌,范宣梅,. 平推式滑坡运动距离计算模型[J]. , 2018, 39(3): 1009-1019.
[5] 蒋 毅,魏思宇,尚彦军,高 强,李严严,. 深部复合地层力学性质研究[J]. , 2017, 38(S2): 266-272.
[6] 许 江,刘龙荣,彭守建,冯 丹,苏小鹏,张 兰, . 不同吸附性气体抽采过程中煤储层参数演化特征研究[J]. , 2017, 38(6): 1647-1656.
[7] 张庆贺,王汉鹏,李术才,薛俊华,张 冰,朱海洋,张德民,. 煤与瓦斯突出物理模拟试验中甲烷相似气体的探索[J]. , 2017, 38(2): 479-486.
[8] 张超林,彭守建,许 江,耿加波,杨红伟,罗小航, . 煤与瓦斯突出过程中气压时空演化规律[J]. , 2017, 38(1): 81-90.
[9] 马 耕,张 帆,刘 晓,冯 丹,张鹏伟,. 地应力对破裂压力和水力裂缝影响的试验研究[J]. , 2016, 37(S2): 216-222.
[10] 齐昌广 ,范高飞 ,崔允亮 ,张 强,. 利用人工合成透明土的岩土物理模拟试验[J]. , 2015, 36(11): 3157-3163.
[11] 徐 平 ,李小春 ,周新民,. 瓦斯抽采过程中孔壁的动态响应分析[J]. , 2015, 36(1): 123-130.
[12] 葛兆龙 ,梅绪东 ,卢义玉 ,夏彬伟 ,陈久福,. 煤矿井下水力压裂钻孔封孔力学模型及试验研究[J]. , 2014, 35(7): 1907-1913.
[13] 袁进科,黄润秋,裴向军. 滚石冲击力测试研究[J]. , 2014, 35(1): 48-54.
[14] 沈 瑞 ,熊 伟 ,高树生. 低渗透岩芯水驱油试验相似理论[J]. , 2012, 33(3): 773-777.
[15] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!