›› 2018, Vol. 39 ›› Issue (1): 265-274.doi: 10.16285/j.rsm.2017.0825

• 岩土工程研究 • 上一篇    下一篇

隧道正交穿越深厚滑坡体的相互影响分析与应对措施

刘天翔1,王忠福2, 3   

  1. 1. 四川省交通运输厅公路规划勘察设计研究院,四川 成都 610041;2. 华北水利水电大学 岩土工程与水工结构研究院,河南 郑州 450045; 3. 中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
  • 收稿日期:2017-04-26 出版日期:2018-01-10 发布日期:2018-06-06
  • 作者简介:刘天翔,男,1980年生,硕士,高级工程师,主要从事公路路基、边坡病害防治设计与监测预警方面的研究工作。
  • 基金资助:

    交通运输部建设科技项目(No. 2013318800020);四川省交通科技项目(No. 2013A1-3,No. 2012C14-2)。

Analysis of interaction when tunnel orthogonal crossing deep-seated landslide and the corresponding control measures

LIU Tian-xiang1, WANG Zhong-fu2, 3   

  1. 1. Sichuan Provincial Transport Department Highway Planning, Survey, Design and Research Institute, Chengdu, Sichuan 610041, China; 2. Institute of Geotechnical and Hydraulic Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China; 3. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
  • Received:2017-04-26 Online:2018-01-10 Published:2018-06-06
  • Supported by:

    This work was supported by the Research Project from Ministry of Transport of China (2013318800020) and the Transportation Science and Technology Project of Sichuan Province (2013A1-3, 2012C14-2).

摘要: 在我国西南山区修建公路隧道时,常常需穿越滑坡等不良地质灾害体,而其中最复杂的组合便是隧道正交穿越滑坡,这一复杂组合耦合了上覆厚度巨大的滑坡体和隧道开挖揭穿滑坡滑面两个不利条件,将会引发滑坡和隧道的强烈相互作用,从而诱发滑坡体和隧道的强烈开裂、变形。以西南山区某高速公路隧道正交穿越厚度超过60 m的老滑坡为背景,对这类隧道–滑坡体系的相互作用而引发的工程病害的机制进行了深入的分析和研究,并采用数值分析方法对坡体、隧道的应力、变形等进行了详细计算分析,同时与规范推荐的传递系数法的计算结果进行了对比分析。结果表明,数值分析方法对这种复杂体系作用下的坡体与隧道的相互影响所进行的分析更为合理,基于应力变形控制理论所确定的最终处治方案具有明显技术合理性和经济优势。目前该隧道已成功穿越滑坡体并通车,这种复杂条件下的隧道-滑坡体系的成功处治在国内外亦是非常少见的,其设计分析思路和应对措施可供今后类似工程参考和借鉴。

关键词: 隧道-滑坡体系, 应力变形控制, 数值分析, 正交穿越, 防治技术

Abstract: When highway tunnels are constructed in the southwest mountainous area in China, they often have to pass through the landslides and other adverse geological disasters. Especially, the tunnel orthogonally crossing the landslide is considered as the most complicated situation. In this case, two serious conditions are coupled, i.e., deep-seated landslide mass with a great thickness and exposed slip surface of landslide. Thus, the coupled action leads to strong interactions between landslide and tunnel, which also can induce the deformation and crack diseases of landslide and tunnel. In this study, a highway tunnel is investigated, which orthogonally crosses an old landslide with an over 60 m thickness in the southwest mountainous area. Due to the interaction of the tunnel-landslide system, the mechanism of the engineering diseases is deeply studied. The numerical analysis method is used to calculate and analyze the stress and deformations of landslide and tunnel as well. Finally, the calculated results are compared with those obtained by the recommended transfer coefficient method. The results verify that the numerical analysis method is more reasonable for analyzing the interaction between the landslide and the tunnel. Meanwhile, it is proven that the final control measures based on stress deformation control theory has obvious technical and economic advantages. At present, the tunnel has successfully passed through the landslide. As it is rare to easily manage this complex tunnel-landslide system, its design analysis method and comprehensive prevention measures provide helpful references for the similar projects in the future.

Key words: tunnel-landslide system, stress deformation control, numerical analysis, orthogonal crossing, control measures

中图分类号: 

  • U 452

[1] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[2] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[3] 李 宁, 杨 敏, 李国锋. 再论岩土工程有限元方法的应用问题[J]. 岩土力学, 2019, 40(3): 1140-1148.
[4] 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168.
[5] 王建军, 陈福全, 李大勇. 低填方加筋路基沉降的Kerr模型解[J]. 岩土力学, 2019, 40(1): 250-259.
[6] 闫澍旺,李 嘉,闫 玥,陈 浩,. 黏性土地基中竖向圆孔的极限稳定深度研究[J]. , 2018, 39(4): 1176-1181.
[7] 阿比尔的,郑颖人,冯夏庭,丛 宇,. 平行黏结模型宏细观力学参数相关性研究[J]. , 2018, 39(4): 1289-1301.
[8] 郭浩然,乔 兰,李 远. 能源桩与周围土体之间荷载传递模型的改进及其桩身承载特性研究[J]. , 2018, 39(11): 4042-4052.
[9] 李一凡,董世明,潘 鑫,李念斌,原 野. 砂岩的I/III复合型断裂试验研究[J]. , 2018, 39(11): 4063-4070.
[10] 郭 洋,李 清,徐文龙,钱 路,田 策. 条形药包爆破预制贯通裂纹动态断裂过程研究[J]. , 2018, 39(10): 3882-3890.
[11] 宋许根,陈从新,夏开宗,陈龙龙,付 华,邓洋洋,杜根明,. 竖井变形破坏机制与继续使用可行性探究[J]. , 2017, 38(S1): 331-342.
[12] 张治国,徐晓洋,姜蕴娟,赵其华,. 隧道正交穿越滑坡体的安全距离及稳定性分析[J]. , 2017, 38(11): 3278-3286.
[13] 汪 昕,蔡 明, . 地震动在地下采场开挖边界的耦合数值分析[J]. , 2017, 38(11): 3347-3354.
[14] 方 志,陈育民,何森凯,何 稼, . 减饱和松砂静态液化的水-气两相流耦合分析[J]. , 2017, 38(11): 3378-3384.
[15] 李一凡,董世明,李念斌. 平台巴西圆盘复合型加载下T应力计算法[J]. , 2016, 37(S1): 645-650.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!