›› 2018, Vol. 39 ›› Issue (2): 437-444.doi: 10.16285/j.rsm.2017.1138

• 基础理论与实验研究 • 上一篇    下一篇

非饱和填土侧限压缩变形特性试验研究及应用初探

张沛然1,黄雪峰1, 2,扈胜霞3,杨校辉1   

  1. 1. 兰州理工大学 土木工程学院,甘肃 兰州 730050;2. 解放军后勤工程学院 土木工程系,重庆 401311; 3. 延安大学 建筑工程学院,陕西 延安 716000
  • 收稿日期:2017-07-20 出版日期:2018-02-10 发布日期:2018-06-06
  • 通讯作者: 黄雪峰,男,1960年生,博士,教授,高级工程师,主要从事湿陷性黄土地基处理、桩基工程等方面的设计和研究。E-mail:hxfen60@163.com E-mail:zhangpr91@163.com
  • 作者简介:张沛然,男,1991年生,硕士研究生,主要从事特殊土与非饱和土、基坑支护等方面的设计和研究。
  • 基金资助:

    陕西省科技统筹创新工程计划课题(No. 2012KTDZD03-04);国家自然科学基金(No. 51309199)。

Experimental study and preliminary application on the confined compressive deformation characteristics of unsaturated filling soils

ZHANG Pei-ran1, HUANG Xue-feng1, 2, HU Sheng-xia3, YANG Xiao-hui1   

  1. 1. College of Civil Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Department of Architectural Engineering, Logistical Engineering University, Chongqing 401311, China; 3. Architectural and Civil Engineering Institute, Yan'an University, Yan'an, Shaanxi 716000, China
  • Received:2017-07-20 Online:2018-02-10 Published:2018-06-06
  • Supported by:

    This work was supported by the Plan Project of Science and Technology Overall Innovation in Shaanxi Province (2012KTDZD03-04) and the National Natural Science Foundation of China(51309199).

摘要: 为研究吸力及压实度对非饱和压实填土压缩变形特性的影响,并建立脱湿(吸力增长)状态下的填方土体工后沉降变形修正计算应用模型,开展了控制吸力和压实度的一维非饱和土侧限压缩试验。结果表明:压缩曲线平缓段随压实度和吸力的提高而增长,表明土样的结构屈服强度同步得到提高;在比容v变化差值序列上,饱和土压缩土样最大、常规压缩土样次之、脱湿土样最小,并且吸力越大,比容v变化差值越小。经历脱湿(吸力增长)后的压实土压缩性降低,定义和建立了吸力压缩系数 及其经验模型,用以表征和度量吸力和压实度对压缩特性的影响规律及程度,发现 随竖向应力增加呈现指数型衰减。对模型参数与压实土相关参量间的关联性进行了分析探讨,同一压实度土样不同吸力所对应的参数 均值随压实水平提高而线性减小,参数λ总体上随吸力的增加而增大,但随压实度的提高吸力对于土体抗压性增强的贡献水平降低且参数 试验数值点靠拢线性趋近线,土样的压缩性随压实度和吸力大小变化而动态调整。基于分层总和法的基本原理初步构造建立了高填方非饱和填土压缩变形修正计算模型(MS),其应用途径应建立在进一步对非饱和压实填土受荷状态下脱湿土-水特征关系的研究基础之上。

关键词: 非饱和土, 压实度, 吸力, 荷载, 压缩变形, 压缩系数

Abstract: To study the influence of suction and degree of compaction on the deformation of unsaturated filling soils, one-dimensional confined compression test of unsaturated soil was carried out to control suction condition and degree of compaction. Results show that the gentle stage of the compressive curve extends with the increase of compaction and suction, indicating the synchronously improved yield strength of soil samples. The saturated soil sample has the largest difference of the specific volume v during the test, and the dehydration soil sample changes the smallest. The greater the suction is, the smaller the difference of specific volume v is. Compressibility of compacted soil decreases after dehydrating or suction growth. The suction compressibility coefficient and its empirical model are defined and established to characterize the influence of suction and compaction on compressive characteristics and measure the influence degree. It is found that the model exhibits exponential decay with increasing the vertical stress. The relationship between the parameters of the model and relevant parameters of compacted soil are analyzed and discussed. The average value of the parameters corresponding to the different suctions of the same compacted soil sample decreases linearly with the increase of compaction level. The parameters generally increase with the increase of suction. However, with the increase of compaction degree, the contribution of suction to the compressive strength decreases and the experimental value point is close to the linear approaching line. The compressibility of soil samples is adjusted dynamically with the change of compaction and suction. Based on the basic principle of the layered summation method, a modified calculation model for the compressive deformation of the high fill unsaturated filling soils (MS) is established. The application of this model should be established on the study of the relationship between soil and water of unsaturated compacted filling soils on the loading state.

Key words: unsaturated loess, compaction degree, suction, load, compressive deformation, compressibility coefficient

中图分类号: 

  • TU 411

[1] 郑方, 邵生俊, 佘芳涛, 袁浩, . 重塑黄土在不同基质吸力下的真三轴剪切试验[J]. 岩土力学, 2020, 41(S1): 156-162.
[2] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[3] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[4] 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388.
[5] 庄心善, 赵汉文, 王俊翔, 黄勇杰, 胡智. 循环荷载下重塑弱膨胀土滞回曲线 形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.
[6] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[7] 文伟, 赖远明, 尤哲敏, 李积锋, . 基于Pitzer离子模型的盐渍非饱和土孔隙 相对湿度计算[J]. 岩土力学, 2020, 41(6): 1944-1952.
[8] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[9] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[10] 谌文武, 贾全全, 童艳梅. 莫高窟壁画地仗土-水特征曲线的测定与拟合[J]. 岩土力学, 2020, 41(5): 1483-1491.
[11] 侯志强, 王宇, 刘冬桥, 李长洪, 刘昊. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.
[12] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[13] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[14] 柳鸿博, 周凤玺, 岳国栋, 郝磊超. 非饱和土中热弹性波的传播特性分析[J]. 岩土力学, 2020, 41(5): 1613-1624.
[15] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!