›› 2018, Vol. 39 ›› Issue (2): 537-545.doi: 10.16285/j.rsm.2016.0941

• 基础理论与实验研究 • 上一篇    下一篇

盾构隧道与周围土体在列车振动荷载作用下的动力响应特性

杨文波1, 2,陈子全1, 2,徐朝阳1, 2,晏启祥1, 2,何 川1, 2,韦 凯2, 3   

  1. 1. 西南交通大学 交通隧道工程教育部重点实验室,四川 成都 610031; 2. 西南交通大学 土木工程学院,四川 成都 610031;3. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031
  • 收稿日期:2016-05-31 出版日期:2018-02-10 发布日期:2018-06-06
  • 通讯作者: 陈子全,男,1989年生,博士研究生,主要从事隧道与地下工程方面的研究工作。E-mail:chenziquan@163.com E-mail:yangwenbo1179@hotmail.com
  • 作者简介:杨文波,男,1985年生,博士,副教授,主要从事隧道与地下工程方面的教学和研究工作。
  • 基金资助:

    国家自然科学基金资助项目(No.51408494,No.51278425,No.51408326);中央高校基本科研业务费专项资金资助(No.2682015CX092)。

Dynamic response of shield tunnels and surrounding soil induced by train vibration

YANG Wen-bo1, 2, CHEN Zi-quan1, 2, XU Zhao-yang1, 2, YAN Qi-xiang1, 2, HE Chuan1, 2, WEI Kai2, 3   

  1. 1. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. Key Laboratory of High-Speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2016-05-31 Online:2018-02-10 Published:2018-06-06
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51408494, 51278425, 51408326) and the Fundamental Research Funds for the Central Universities(2682015CX092).

摘要: 为研究列车振动荷载作用下盾构隧道结构及周围土体的动力响应特性,采用模型试验方法,通过布置在盾构隧道底部的激振器施加扫频激振荷载和列车振动荷载,采用频率响应函数FRF与最大加速度分析了盾构隧道衬砌结构与周围土体不同位置处的动力响应及其衰减规律。研究结果表明:FRF是隧道衬砌结构和周围土体自身的动力响应特性的体现,与激振力的大小、扫频方向及扫频时间无关;在隧道管片衬砌结构的底部和顶部均体现出高频响应大于低频响应的特性,隧道顶部加速度响应沿隧道纵向衰减幅度明显小于隧道底部;隧道周围土体的动力响应沿深度有明显变化,但均表现出沿隧道轴向衰减的规律。隧道结构上部第1层测点土体的动力响应在全频域内随频率的增加逐渐增大。但在第2层和地表的第3层测点,土体的动力响应在30~90 Hz区段线性增长,在90~300 Hz区段出现波动变化,并无明显增大趋势;与扫频激振荷载引起的动力响应规律一致,由列车运行振动荷载引起的隧道管片衬砌结构和周围土体的振动沿隧道轴向逐渐衰减,隧道底部的加速度响应大于顶部,随着列车车速的增大,在隧道内部引起的加速度响应将显著增大。同时,在列车振动荷载作用下发现地表存在加速度放大效应,地表第3层测点的加速度响应均大于隧道结构上部第1层测点。

关键词: 盾构隧道, 振动荷载, 动力响应, 频率响应函数FRF, 隧道衬砌结构, 隧道周围土体

Abstract: To investigate dynamic behaviour of shield tunnels and surrounding soil, a physical model test was conducted. An electromagnetic shaker located at the bottom of the shield tunnel was used to apply sweep excitation and train vibration load. The data of accelerometers are applied to calculate the frequency response function (FRF) and the maximum acceleration of the tunnel and soil. It is found that FRF is insensitive to the excitation amplitude, sweep direction and period, which represents dynamic characteristics of tunnel lining structure and surrounding soil. The results also show that the high-frequency response is greater than the low-frequency response at the tunnel lining. The attenuation of dynamic response along the longitudinal direction of the tunnel is obviously faster at the tunnel invert comparing to at the tunnel apex. For surrounding soil, a variety of dynamic response with depth is observed. A clear degradation of soil response along the longitudinal direction of the tunnel is found at all depths. The soil response increases with the increase of excitation frequency at the first measurement layer above the tunnel lining. However, at the second and third measurement layer, soil response increases linearly at the frequency of 30-90 Hz. At higher frequency range, soil response does not show a clear increasing trend with frequency. The dynamic response under train-vibration load is consistent with sweep excitation load. Both tunnel and soil responses decrease in the longitudinal direction. Tunnel response at the tunnel invert is larger than that at the tunnel apex. With the increase of the train speed, tunnel and soil responses are significantly amplified. It is also found that the soil responses at the free surface are more significant than the soil responses inside the soil layer from train induced vibration.

Key words: shield tunnels, vibration load, dynamic response, frequency response function, tunnel lining, soil

中图分类号: 

  • TU 458

[1] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[2] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[3] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[4] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[5] 王立安, 赵建昌, 侯小强, 刘生纬, 王作伟. 非均匀饱和半空间的Lamb问题[J]. 岩土力学, 2020, 41(5): 1790-1798.
[6] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
[7] 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387.
[8] 刘建民, 邱月, 郭婷婷, 宋文智, 谷川, . 饱和粉质黏土静剪强度与振动后 静剪强度对比研究[J]. 岩土力学, 2020, 41(3): 773-780.
[9] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[10] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
[11] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[12] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[13] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[14] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[15] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!