›› 2018, Vol. 39 ›› Issue (2): 665-674.doi: 10.16285/j.rsm.2016.0387

• 岩土工程研究 • 上一篇    下一篇

白鹤滩水电站左岸坝肩开挖边坡稳定性分析

李 韬1, 2,徐奴文1, 2,戴 峰1,李天斌2,樊义林3,李 彪1   

  1. 1. 四川大学 水力学与山区河流开发保护国家重点实验室,四川 成都 610065; 2. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059;3. 中国长江三峡集团有限公司,北京 100038
  • 收稿日期:2016-05-13 出版日期:2018-02-10 发布日期:2018-06-06
  • 通讯作者: 徐奴文,男,1981年生,博士,副研究员,硕士生导师,主要从事岩土工程灾害机制与微震监测方面的教学与研究工作。 E-mail:xunuwen@scu.edu.cn E-mail:taoli@stu.scu.edu.cn
  • 作者简介:李韬,男,1992年生,硕士研究生,主要从事岩土工程数值模拟方面的研究工作。
  • 基金资助:

    国家自然科学基金面上项目(No. 51679158);国家重点基础研究发展计划(973计划)(No. 2015CB057903);地质灾害防治与地质环境保护国家重点实验室开放基金(No. SKLGP2016K018)。

Stability analysis of left bank abutment slope at Baihetan hydropower station subjected to excavation

LI Tao1, 2, XU Nu-wen1, 2, DAI Feng1, LI Tian-bin2, FAN Yi-lin3, LI Biao1   

  1. 1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; 2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 3. China Three Gorges Corporation, Beijing 100038, China
  • Received:2016-05-13 Online:2018-02-10 Published:2018-06-06
  • Supported by:

    This work was supported by the General Program of National Natural Science Foundation of China (51679158), the National Program on Key Basic Research Project of China (973 Program) (2015CB057903) and the Opening Fund of State Key Laboratory Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (SKLGP2016K018).

摘要: 白鹤滩水电站左岸坝基边坡地质构造错综复杂,坡内多条陡倾断层和顺坡向错动带是控制边坡稳定性的主要因素。结合现场地质资料、监测数据及勘察认识,利用通用离散元软件UDEC建立左岸边坡开挖变形分析模型。首先在无支护开挖工况下研究主要结构面F17、LS331、LS3319上下盘岩体关键点应力及位移变化,并指出潜在失稳破坏区;同时采用预应力锚索单元在不同施工时序下对潜在不稳定块体进行加固计算,对比研究了不同方案下左岸边坡的变形破坏机制和整体稳定性。计算结果和现场监测表明:左岸边坡变形破坏与结构面密切相关,在开挖卸荷作用下主要表现为沿错动带的压剪破坏和陡倾断层的张拉破坏,采用预应力锚索加固处理能够有效提高边坡稳定性,并且在开挖后及时跟进支护可以有效抑制边坡剪切变形。研究结果对白鹤滩左岸坝基边坡后续工程加固和施工工序具有一定的参考价值。

关键词: 白鹤滩水电站, 岩质边坡, 数值模拟, 变形破坏机制, 预应力锚索, 加固方案

Abstract: The geological structures of the left bank slope at Baihetan hydropower station are extremely complicated. Many steep faults and interlayer staggered zones are the most significant risks which influence the stability of the left bank slope. Based on the analysis of the survey and field monitoring data, a numerical software UDEC was then adopted to build the numerical model for deformation analysis of the left bank slope. Under the condition of unsupported excavation, the stress and displacement changes of the key points of F17, LS331 and LS3319 at hanging wall and footwall rock masses were analysed to identify the potential instability failure areas. Meanwhile, the behaviours of potentially unstable block reinforced using pre-stressed anchorage cables were simulated at different construction procedures. The deformation characteristics, failure mechanisms and overall stability of the left bank slope were comparatively analysed using different models. Numerical modelling and field observation both show that the slope stability is strongly related to rock mass structural planes. Moreover, the deformation and damage of the left bank slope are mainly induced by the shear failure of interlayer staggered zones and tensile fracture of faults under unloading conditions. Pre-stressed anchorage cables can efficiently improve the stability and reduce the deformation of the rock slope. To efficiently control the shear deformation of rock slope, the excavation and support should be carried out simultaneously. The obtained results have particular significance to the design of reinforcement and construction process.

Key words: Baihetan hydropower station, rock slope, numerical simulation, deformation and failure mechanism, pre-stressed anchorage cables, reinforcement scheme

中图分类号: 

  • TU457

[1] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[2] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[3] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[4] 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669.
[5] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[6] 周子涵, 陈忠辉, 王建明, 张凌凡, 年庚乾. 爆破荷载作用下露天矿边坡稳定性的突变研究[J]. 岩土力学, 2020, 41(3): 849-857.
[7] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[8] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[9] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[10] 李剑, 陈善雄, 余飞, 姜领发, 戴张俊. 预应力锚索加固高陡边坡机制探讨[J]. 岩土力学, 2020, 41(2): 707-713.
[11] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[12] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[13] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[14] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[15] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!