›› 2018, Vol. 39 ›› Issue (2): 705-714.doi: 10.16285/j.rsm.2016.0740

• 岩土工程研究 • 上一篇    下一篇

基于巨厚岩层-煤柱协同变形的煤柱稳定性

张 明1,姜福兴2,李家卓1,焦振华1,胡 浩1,舒凑先2,高化军3   

  1. 1. 安徽理工大学 省部共建深部煤矿采动响应与灾害防控国家重点实验室(筹),安徽 淮南 232001; 2. 北京科技大学 土木与资源工程学院,北京 100083;3. 枣庄矿业集团 高庄煤业有限公司,山东 济宁 277605
  • 收稿日期:2016-05-13 出版日期:2018-02-10 发布日期:2018-06-06
  • 作者简介:张明,男,1987年生,讲师,主要从事矿山压力与岩层控制和冲击地压等方面的教学与科研工作。
  • 基金资助:

    国家重点研发计划项目(No. 2016YFC0801408,No. 2017YFC0804202);国家自然科学基金项目(No. 51574008,No. 51674014,No. 51634001);深部煤矿采动响应与灾害防控安徽省重点实验室开放基金项目(No. KLDCMERDPC17107)。

Stability of coal pillar on the basis of the co-deformation of thick rock strata and coal pillar

ZHANG Ming1, JIANG Fu-xing2, LI Jia-zhuo1, JIAO Zhen-hua1, HU Hao1, SHU Cou-xian2, GAO Hua-jun3   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3. Gaozhuang Coal Industry Co., Ltd., Zaozhuang Mining Group, Jining, Shandong 277605, China
  • Received:2016-05-13 Online:2018-02-10 Published:2018-06-06
  • Supported by:

    This work was supported by the National Key Research and Development Program of China(2016YFC0801408, 2017YFC0804202), the National Natural Science Foundation of China(51574008, 51674014, 51634001) and the Foundation of AnHui Provincal Key Laboratory of Mining-Induced Response & Disaster Prevention and Control in Deep Coal Mines(KLDCMERDPC17107).

摘要: 采前煤柱稳定性研究是工作面冲击危险性评估和开采方案设计的关键。以山东某矿深井巨厚砾岩条件工作面开采遗留煤柱为背景,采用案例调研、理论分析、数值模拟和工程实践等方法,对巨厚岩层-煤柱协同变形机制及其煤柱稳定性进行了研究,建立了巨厚岩层-煤柱协同变形的简化力学模型,探讨了引起煤柱变形的主要应力来源和变形形式,推导了在协同变形条件下煤柱的应力-应变关系。以此为基础,综合煤柱煤体应力、围岩稳定性和变形特征等条件,提出了煤柱整体失稳的力学判据。研究结果表明:巨厚岩层-煤柱失稳诱发冲击与煤柱的位置、尺寸和上覆岩层运动或变形关系密切,上覆岩层运动或变形是诱发煤柱失稳的动力因素;巨厚岩层-煤柱的变形主要包括受集中力F压迫的协同挠曲压缩变形和受集中力G作用的重力沉降变形,二者保持内在协调性;巨厚岩层下煤柱整体失稳的工程判据为煤柱煤体平均支承应力p超过其平均极限支承强度Rc(p≥Rc);评估得到遗留的50 m煤柱具有强冲击危险性,并通过优化开采设计,取得了良好的效果。该研究成果对相似条件煤柱留设及其稳定性分析具有参考意义。

关键词: 巨厚岩层, 煤柱稳定性, 协同变形, 失稳判据

Abstract: It is essential to assess the stability of coal pillar before mining for the evaluation of its rockburst risk and determination of mining schemes. Based on the geological conditions of a deep coal mine in Shandong province, China, these methods including in-situ case study, theoretical analysis, numerical simulation and engineering practice were adopted to evaluate the stability of the coal pillar with thick conglomerate upper strata. The deformation of conglomerate strata and coal pillar was analysed on the basis of a simplified mechanical model. We investigated the primary source of stress that caused coal pillar deformation and its deformation form, and obtained the stress-strain curve of coal pillar. Then, by considering the stress in coal pillar, surrounding rock stability and deformation, a mechanical criterion of coal pillar failure was proposed. It indicates that the location and size of a coal pillar, as well as the deformation of conglomerate upper strata, have significant impacts on the failure of coal pillar. The deformation of upper strata results in dynamic loading on the coal pillar. The deformation of coal pillar mainly includes collaborative deflection compression deformation induced by the concentration load F and the gravity settlement deformation caused by the concentration load G. The coal pillar failures when the supporting stress (p) is greater than its ultimate strength (Rc). It is found that the coal pillar with 50 m width has a high risk of rockburst, the risk decreased by optimising the mining scheme and achieved good effects. The results of this study are of significance for the analysis of the stability of coal pillar with similar conditions.

Key words: thick rock strata, stability of coal pillar, coordination deformation, instability criterion

中图分类号: 

  • TD 821

[1] 肖明清, 徐晨, . 基于临界稳定断面的隧道围岩稳定性分析方法探讨[J]. 岩土力学, 2020, 41(5): 1690-1698.
[2] 涂义亮,刘新荣,钟祖良,杜立兵,王 鹏, . 三类边坡失稳判据的统一性[J]. , 2018, 39(1): 173-180.
[3] 杨利福 ,常晓林 ,周 伟 ,程勇刚 ,马 刚 , . 基于离散元的重力坝多滑面深层抗滑稳定分析[J]. , 2015, 36(5): 1463-1470.
[4] 胡松山 ,童申家 ,刘斌清 ,谭 华 ,覃润浦 , . 基于非均质边坡强度折减法的三维桥基边坡稳定性分析[J]. , 2014, 35(S2): 653-661.
[5] 周元辅 ,邓建辉 ,崔玉龙 ,郑洪春 ,陈 滔 , . 基于强度折减法的三维边坡失稳判据[J]. , 2014, 35(5): 1430-1437.
[6] 施建勇,曹秋荣,周璐翡. 修正有限元强度折减法与失稳判据在边坡稳定分析中的应用[J]. , 2013, 34(S2): 237-241.
[7] 张爱军 ,莫海鸿 . 有限元强度折减法中边坡失稳位移突变判据的改进[J]. , 2013, 34(S2): 332-337.
[8] 陈国庆 ,黄润秋 ,周 辉 ,许 强 ,李天斌 . 边坡渐进破坏的动态强度折减法研究[J]. , 2013, 34(4): 1140-1146.
[9] 漆祖芳 ,姜清辉 ,唐志丹 ,周创兵. 锦屏一级水电站左岸坝肩边坡施工期稳定分析[J]. , 2012, 33(2): 531-538.
[10] 胡安峰 ,陈博浪 ,应宏伟. 土体本构模型对强度折减法分析基坑整体稳定性的影响[J]. , 2011, 32(S2): 592-597.
[11] 万少石,年廷凯,蒋景彩,栾茂田. 边坡稳定强度折减有限元分析中的若干问题讨论[J]. , 2010, 31(7): 2283-2288.
[12] 裴利剑,屈本宁,钱闪光. 有限元强度折减法边坡失稳判据的统一性[J]. , 2010, 31(10): 3337-3341.
[13] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144-150.
[14] 陈绍杰,郭惟嘉,杨永杰,王亚博. 基于室内试验的条带煤柱稳定性研究[J]. , 2008, 29(10): 2678-2682.
[15] 付成华 ,陈胜宏 . 基于突变理论的地下工程洞室围岩失稳判据研究[J]. , 2008, 29(1): 167-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!