›› 2018, Vol. 39 ›› Issue (3): 889-898.doi: 10.16285/j.rsm.2017.0725

• 基础理论与实验研究 • 上一篇    下一篇

缺陷岩体加速协同化破坏机制及前兆信息辨识

张士川1, 2,郭惟嘉1, 2,徐翠翠1, 2   

  1. 1. 山东科技大学 矿业与安全工程学院,山东 青岛 266590;2. 山东科技大学 矿山灾害预防控制教育部重点试验室,山东 青岛 266590
  • 收稿日期:2017-04-17 出版日期:2018-03-12 发布日期:2018-06-06
  • 通讯作者: 郭惟嘉,男,1957年生,博士,教授,博士生导师,主要从事煤矿特殊开采方面的研究工作。E-mail: wjguo@sdust.edu.cn E-mail:373260186@qq.com
  • 作者简介:张士川,男,1989年生,博士研究生,主要从事煤矿特殊开采方面的研究工作。
  • 基金资助:

    山东省自然科学基金(No.ZR2016EEB07);山东科技大学人才引进科研启动基金(No.2016RCJJ025);青岛市源头创新计划应用基础研究项目(No.17-12-01-11-jch)。

Accelerated synergistic failure mechanism of defected rock mass and precursor information identification

ZHANG Shi-chuan1, 2, GUO Wei-jia1, 2, XU Cui-cui1, 2   

  1. 1. College of Mining and Safety Engineering, Shandong University of Sciences and Technology, Qingdao, Shandong 266590, China; 2. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Sciences and Technology, Qingdao, Shandong 266590, China
  • Received:2017-04-17 Online:2018-03-12 Published:2018-06-06
  • Supported by:

    This work was supported by the Natural Science Foundation of Shandong Province (ZR2016EEB07), the Scientific Research Foundation of Shandong University of Science and Technology Talents (2016RCJJ025) and the Basic Research Project of Qingdao Source Innovation Program (17-12-01-11-jch).

摘要: 缺陷岩体对地下煤体的安全开采构成威胁,同时对工程长期安全运行带来较大的隐患,分析其破坏前后所展现的物理量变化特征,将为岩体失稳提供前兆辨识信息。以含缺陷单元的石膏组合体为研究对象,研究其破坏-失稳时空演化过程,捕捉和比较失稳前关键时刻对应物理场信息的变化差别,探讨岩体破坏失稳前由独立活动向整体协同化运动的过程。试验结果表明:缺陷组合体完全破坏分为强偏离线性、静态亚失稳和动态亚失稳3个阶段;首先相对强段为承载主体,弱段出现孤立的应变积累区和释放点并作用于强弱接触面;之后弱段积累区迅速增多并扩展和迁移,不同性态岩体呈现应变协同化传递具有单元性和区域性特征;最终应变释放点相互贯通,强弱段相互作用加强使得协同化程度达到最大,成为岩体进入全面失稳快速破坏的标志。为进一步验证上述试验结果的科学性、合理性,以某矿井断层采动涌水为工程背景,制作采场断层模型并进行双向加载试验,研究断层失稳错动引发涌水的过程及触发条件,揭示了断层亚失稳阶段协同化破坏机制。上述试验结果表明缺陷岩体进入亚失稳阶段是协同化破坏开始的标志。

关键词: 亚失稳阶段, 应变释放, 缺陷岩体, 协同化破坏

Abstract: Defected rock mass seriously threatens the safety construction and long-term operation of underground engineering. It is significant to investigate the physical variables before and after the instability, which provides useful information to identify the precursor of rock mass instability failure. This study is to conduct experiments on the gypsum in combination with crack elements, and further to investigate its space-time evolution process of the failure-instability. Before the instability failure, the changes in the corresponding physical field are captured and compared at critical moments. The processes from the independent activity to overall synergistic movement of rock mass are discussed as well. Experimental results indicate that the complete destruction of the crack combination can be divided into three stages: strong deviation from the linear, static sub-instability and dynamic sub-instability. In the non-linear stage, the relatively strong segment become the main bearing body. The isolated strain accumulating area and releasing points appeared firstly in the weak segment, and then acted on the interface between strong and weak segments. Strain accumulating areas in the weak segment rapidly increase, extend and migrate. Different lithologies of rock mass present strain synergistic transmission with unitary and regional characteristics. Finally, strain releasing points are mutually connected. When both the synergistic effect and strain accumulation degree in the strong segment reach their limits, the stage of rapid destruction of rock mass into full instability emerges. A stope fault model is established to further verify that the results are scientific and rational. This model was based on the engineering background of water inrush in a coal mining. The two-axial loading experiment was carried out to investigate the process of water inrush and trigger conditions caused by the fault instability. The mechanism of synergetic failure in the sub-instability stage is revealed. Experimental results indicate that the sub-instability stage of jointed rock mass makes the beginning of synergistic failure.

Key words: sub-instability stage, strain release, defected rock mass, synergistic destruction

中图分类号: 

  • TU 45

[1] 蔡奇鹏,吴宏伟,胡 平,陈星欣,李升才,. 跨越走滑断层黏土地层动力响应离心机试验研究[J]. , 2018, 39(7): 2424-2432.
[2] 孔 洋,朱珍德,阮怀宁, . 三向应力作用下节理岩体渗流-应力耦合特性[J]. , 2018, 39(6): 2008-2016.
[3] 刘传正,张建经,崔 鹏,. 岩体夹层应力波能量演化及应力响应特征分析[J]. , 2018, 39(6): 2267-2277.
[4] 阿比尔的,郑颖人,冯夏庭,丛 宇,. 平行黏结模型宏细观力学参数相关性研究[J]. , 2018, 39(4): 1289-1301.
[5] 周泽林,陈寿根,涂 鹏,张海生, . 基坑开挖对邻近隧道影响的耦合分析方法[J]. , 2018, 39(4): 1440-1449.
[6] 蒋水华,魏博文,张文举,江先河,黄劲松,. 基于多源试验数据空间变异土体参数概率反演及边坡可靠度更新[J]. , 2018, 39(4): 1491-1499.
[7] 李 震,周 辉,杨凡杰,赵洪波,茹忠亮, . 弹塑性耦合应变定义与本构方程[J]. , 2018, 39(3): 917-925.
[8] 司雪峰, 宫凤强,罗 勇,李夕兵, . 深部三维圆形洞室岩爆过程的模拟试验[J]. , 2018, 39(2): 621-634.
[9] 杜 野,裴向军,黄润秋,何智浩,张佳兴. 黏度时变性注浆材料流动特性与应用研究[J]. , 2017, 38(12): 3498-3504.
[10] 蒋水华,姚 池,杨建华,周创兵,. 基于BUS方法的无限长边坡可靠度更新[J]. , 2017, 38(12): 3555-3564.
[11] 周 磊,朱哲明,刘 邦. 裂纹对直墙拱形隧道围岩损伤破坏模式的影响规律研究[J]. , 2017, 38(12): 3688-3697.
[12] 刘新荣,刘 俊,李栋梁,何春梅,王子娟,谢应坤,. 不同初始卸荷水平对深埋砂岩力学特性影响规律试验研究[J]. , 2017, 38(11): 3081-3088.
[13] 张 玉,王亚玲, 张晓东,李 静,栾雅琳. 高埋深储层膏质泥岩蠕变力学特性试验研究[J]. , 2017, 38(11): 3179-3186.
[14] 潘 艺,刘 镇,周翠英, . 红层软岩遇水崩解特性试验及其界面模型[J]. , 2017, 38(11): 3231-3239.
[15] 张治国,徐晓洋,姜蕴娟,赵其华,. 隧道正交穿越滑坡体的安全距离及稳定性分析[J]. , 2017, 38(11): 3278-3286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!