›› 2018, Vol. 39 ›› Issue (3): 917-925.doi: 10.16285/j.rsm.2016.0707

• 基础理论与实验研究 • 上一篇    下一篇

弹塑性耦合应变定义与本构方程

李 震1, 2,周 辉3,杨凡杰3,赵洪波1, 2,茹忠亮1, 2   

  1. 1. 河南理工大学 深部矿井建设重点学科开放实验室,河南 焦作 454000; 2. 河南理工大学 土木工程学院,河南 焦作 454000; 3. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室,湖北 武汉 430071
  • 收稿日期:2016-04-07 出版日期:2018-03-12 发布日期:2018-06-06
  • 通讯作者: 周辉,男,1972年生,博士,研究员,主要从事岩石力学试验、理论、数值分析与工程安全性分析方面的研究工作。E-mail: hzhou@whrsm.ac.cn E-mail: zhenli@hpu.edu.cn
  • 作者简介:李震,男,1986年生,博士,讲师,主要从事岩石力学试验、理论与工程安全性分析方面的工作。
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2014CB046902);中国科学院科技创新“交叉与合作团队”(人教字〔2012〕119 号);中国科学院知识创新工程重要方向项目(No.KZCX2-EW-QN115);国家自然科学基金项目(No.51404240,No.51427803,No.51704097);河南省教育厅高等学校重点科研项目(No.16A560004),河南省高校科技创新团队(No.15IRTSTHN029)。

Elastoplastic coupling strain definition and constitutive function

LI Zhen1, 2, ZHOU Hui3, YANG Fan-jie3, ZHAO Hong-bo1, 2, RU Zhong-liang1, 2   

  1. 1. Open Laboratory of Deep Mine Construction, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 2. School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2016-04-07 Online:2018-03-12 Published:2018-06-06
  • Supported by:

    This work was supported by the National Basic Research Program of China (2014CB046902), the Innovative Research Team of the Chinese Academy of Sciences ((2012)119), the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-QN115), the National Natural Science Foundation of China (51404240, 51427803, 51704097), the Key Scientific Research Project of Institutions of Henan Higher Education (16A560004) and the Innovative Research Team in University of Henan Province (15IRTSTHN029).

摘要: 岩石屈服之后,弹性参数随塑性变形而变化,即岩石具有弹塑性耦合特征。在弹塑性耦合框架和现有应变分类、定义、本构方程研究的基础上,主要做了以下工作:结合岩石压缩试验,从损伤和塑性变形角度分析了弹性参数随塑性演化的现象;重点研究了加载增量步的应变特征,将与加载应力增量对应的应变增量分解为符合广义Hooke定律的弹性应变增量 、不符合广义Hooke定律的弹性应变增量 和塑性应变增量 ;通过采用加载增量步之后的弹性参数将 与 构造弹性关系,分别在应变空间和应力空间中建立了适用于加载、中性变载和卸载条件的本构方程;对表征物质微观结构变化的内变量进行了讨论。所提出的应变分类和定义方法概念清晰,适合于应变强化阶段和应变软化阶段,且所建立的弹塑性耦合本构方程能够反映不同加载条件对弹性参数变化速率的影响,符合岩石的弹塑性耦合力学特性。

关键词: 弹塑性耦合, 本构方程, 弹性参数, 应变

Abstract: Rock is characterised as the elastoplastic coupling, which means its elastic parameters change with the variation of plastic deformation beyond the threshold of yield. Based on current classification, definition and constitutive function of strain, the following work was conducted under the framework of elastoplastic coupling. Firstly, through compressive tests, the evolution of elastic parameters was analysed from the aspects of the damage and plastic deformation. The strain was mainly studied under the condition of loading incremental step. It was suggested that the strain increment corresponding to the loading increment could be decomposed into elastic strain increment , elastic strain increment and plastic strain increment respectively. Furthermore, was following the generalised Hooke’s law, while was against Hooke’s law. The elastic relationship was constituted with elastic parameters after loading incremental step. Constitutive functions were then formulated in strain and stress spaces under loading, neutral loading and unloading conditions, respectively. The discussion was made on the internal variable increment reflecting the microstructure change. In general, the classification and definition of strain are explicit in concept and suitable for strain hardening and softening sections. Moreover, the elastoplastic coupling constitutive function considers the influences of different loading conditions on the changing rates of elastic parameters. Overall, the strain definition and constitutive function are in accordance with rock elastoplastic coupling characters.

Key words: elastoplastic coupling, constitutive function, elastic parameter, strain

中图分类号: 

  • TU 45

[1] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[2] 李丽华, 余肖婷, 肖衡林, 马强, 刘一鸣, 杨 星, . 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178.
[3] 段君义, 杨果林, 胡敏, 邱明明, 俞昀, . 加卸载作用下加筋垫层变形特征试验研究[J]. 岩土力学, 2020, 41(7): 2333-2341.
[4] 王康宇, 庄妍, 耿雪玉, . 铁路路基粗粒土填料临界动应力试验研究[J]. 岩土力学, 2020, 41(6): 1865-1873.
[5] 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910.
[6] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[7] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[8] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[9] 李佳龙, 李钢, 于龙. 隔离非线性平面应变单元模型及其 在Drucker-Prager模型中的应用[J]. 岩土力学, 2020, 41(5): 1492-1501.
[10] 侯志强, 王宇, 刘冬桥, 李长洪, 刘昊. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.
[11] 韩超, 庞德朋, 李德建. 砂岩分级加卸载蠕变试验过程能量演化分析[J]. 岩土力学, 2020, 41(4): 1179-1188.
[12] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
[13] 周恩全, 宗之鑫, 王琼, 陆建飞, 左熹. 橡胶-粉土轻质混合土中管道动力响应特性[J]. 岩土力学, 2020, 41(4): 1388-1395.
[14] 郎瑞卿, 杨爱武, 闫澍旺, . 修正等应变假定下刚性桩复合地基固结特性分析[J]. 岩土力学, 2020, 41(3): 813-822.
[15] 吴祁新, 杨仲轩. 基于应变响应包络的颗粒材料增量力学行为研究[J]. 岩土力学, 2020, 41(3): 915-922.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!