›› 2018, Vol. 39 ›› Issue (3): 1027-1036.doi: 10.16285/j.rsm.2016.0507

• 岩土工程研究 • 上一篇    下一篇

泡沫混凝土隧道减震层减震机制

赵武胜1,陈卫忠1, 2,马少森2,赵 坤1,宋万鹏1,李 灿1   

  1. 1. 中国科学院武汉岩土力学研究所 岩石力学与工程国家重点实验室,湖北 武汉 430071; 2. 山东大学 岩土与结构工程研究中心,山东 济南 250061
  • 收稿日期:2016-03-17 出版日期:2018-03-12 发布日期:2018-06-06
  • 作者简介:赵武胜,男,1987年生,博士,副研究员,主要从事隧道及地下结构抗震方面的研究工作。
  • 基金资助:

    国家自然科学基金(No.51409245);国家重点基础研究发展计划(973)项目(No.2015CB057906)。

Isolation effect of foamed concrete layer on the seismic responses of tunnel

ZHAO Wu-sheng1, CHEN Wei-zhong1, 2, MA Shao-sen2, ZHAO Kun1, SONG Wan-peng1, LI Can1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China
  • Received:2016-03-17 Online:2018-03-12 Published:2018-06-06
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51409245) and the National Program on Key Basic Research Project of China (973 Program) (2015CB057906).

摘要: 基于泡沫混凝土隧道减震材料,通过室内试验研究了不同密度、围压、应变率条件下泡沫混凝土材料的力学特性。试验结果表明:随着密度的增加,试样的单轴破坏形态由骨架坍塌破坏逐渐转化为劈裂剪切破坏,峰后应变软化与材料脆性增强;随着围压的增加,材料强度增加且延性增强,峰后由应变软化逐渐转换为应变硬化。在中等应变率范围内(10?5/s ~10?3/s),随着应变率的增加,泡沫混凝土材料的强度近似呈指数增长,同时峰后残余应力增长明显,且塑性应变越大,应变率对峰后应力的影响越大。基于上述试验结果初步建立了泡沫混凝土材料的本构模型。依托嘎隆拉隧道,采用数值方法研究了减震层剪切模量、厚度及减震层-衬砌界面特性3个因素对减震效果的影响规律,相关研究成果可为高烈度区隧道工程减震层的设计提供参考。

关键词: 泡沫混凝土, 应变率, 隧道, 减震层, 界面

Abstract: Owing to the excellent shock absorption property of the foamed concrete, it can be used as a seismic isolation material for tunnels. In this study, a series of compression tests was conducted to study the effects of density, confining pressure and strain rate on mechanical properties of the foamed concrete. As the density increased, the failure mode of foamed concrete gradually changed from cell wall buckling to shear failure under the uniaxial compression condition. Besides, the strain-softening and material brittleness became more apparent after the peak. In addition, the strength and ductility of the foamed concrete increased with increasing confining pressure. Moreover, the property of foamed concrete transformed from a strain-softening to strain-hardening material. When strain rate increased in the range of medium strain rate (10?5/s~10?3/s), the strength of foamed concrete showed an exponential growth, and the residual stress in plastic range increased obviously. It was found that the effect of strain rate on the residual stress was greater with the increase of plastic strain. Based on the testing results, a new constitutive model was initially proposed for the foamed concrete. Then the numerical method was performed to investigate the effects of the shear modulus of isolation material, the thickness of isolation layer, and the properties of isolation interface on the isolation of Galongla tunnel. Therefore, the results can provide a helpful reference for the design of the related cushioning layer in tunnels with high intensity.

Key words: foamed concrete, strain rate, tunnel, isolation layer, interface

中图分类号: 

  • U 451

[1] 徐日庆, 程康, 应宏伟, 林存刚, 梁荣柱, 冯苏阳, . 考虑埋深与剪切效应的基坑卸荷下卧 隧道的形变响应[J]. 岩土力学, 2020, 41(S1): 195-207.
[2] 郑刚, 栗晴瀚, 程雪松, 哈达, 赵悦镔. 承压层快速减压与回灌应用于隧道抢险的理论与设计[J]. 岩土力学, 2020, 41(S1): 208-216.
[3] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[4] 房昱纬, 吴振君, 盛谦, 汤华, 梁栋才, . 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503.
[5] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[6] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[7] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[8] 刘海峰, 朱长歧, 汪稔, 王新志, 崔翔, 王天民, . 礁灰岩-混凝土界面剪切特性试验研究[J]. 岩土力学, 2020, 41(5): 1540-1548.
[9] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[10] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[11] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[12] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[13] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[14] 郑立夫, 高永涛, 周喻, 田书广. 基于流固耦合理论水下隧道冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(3): 1029-1038.
[15] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!