›› 2018, Vol. 39 ›› Issue (5): 1573-1580.doi: 10.16285/j.rsm.2017.0763

• 基础理论与实验研究 • 上一篇    下一篇

珊瑚砂高压力下一维蠕变分形破碎及颗粒形状分析

张小燕1, 2,蔡燕燕2, 3,王振波1,江芸倩1   

  1. 1. 中国矿业大学(北京) 力学与建筑工程学院,北京 100083; 2. 中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221008;3. 华侨大学 岩土工程研究所,福建 厦门 361021
  • 收稿日期:2017-04-21 出版日期:2018-05-11 发布日期:2018-06-12
  • 作者简介:张小燕,女,1986年生,博士,讲师,主要从事珊瑚砂颗粒破碎等岩土工程方面的研究。
  • 基金资助:

    国家自然科学基金项目(No. 51774147);中国矿业大学深部岩土力学与地下工程国家重点实验室开放基金(No. SKLGDUEK1701);福建省自然科学基金项目(No. 2017J01094);中央高校基本科研业务费(No. 2017QL04)。

Fractal breakage and particle shape analysis for coral sand under high-pressure and one-dimensional creep conditions

ZHANG Xiao-yan1, 2, CAI Yan-yan2, 3, WANG Zhen-bo1, JIANG Yun-qian1   

  1. 1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China; 3. Institute of Geotechnical Engineering, Huaqiao University, Xiamen, Fujian 361021, China)
  • Received:2017-04-21 Online:2018-05-11 Published:2018-06-12
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51774147), the Open Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (SKLGDUEK1701), the Natural Science Foundation of Fujian Province of China (2017J01094) and the Fundamental Research Funds for the Central Universities (2017QL04).

摘要: 珊瑚砂是一种含钙极高的海洋生物成因材料,具有高棱角性、形状不规则、易破碎等特点。通过珊瑚砂的高压一维蠕变试验,研究颗粒破碎引起颗粒分布曲线和形状因子的演化规律。借助于高速动态图像的激光粒度粒形仪器,从统计学的角度分析试验前后颗粒形状随压力演化的关系,发现颗粒的形状因子,如长宽比、球形度和凹凸度等,随压力增加而逐渐增加。不同粒径的颗粒形状因子均向一个窄幅范围趋近,说明颗粒破碎具有无尺度性和自相似性的分形特性,分形维数随压力增加而逐渐增大,且趋近分形破碎极限。采用Hardin和Einav的方法计算相对破碎量,发现在两种计算方法下相对破碎量与压力呈幂函数关系,且幂指数相同。相对破碎量随时间增加的现象并不明显,说明在高压力下颗粒破碎主要为压缩破碎,且颗粒细化滑移填充孔隙引起的变形是造成蠕变的主要原因。

关键词: 珊瑚砂, 分形, 颗粒形状, 蠕变, 颗粒破碎

Abstract: Coral sand is a type of marine biogenic granular material with extremely high calcium content. From the microscopic viewpoint, coral sand grains are characterized as highly angular, irregular in shapes and crushable. One-dimensional creep tests were conducted on coral sand under very high pressure to investigate the evolution of particle size distribution and change of particle shapes caused by particle breakage. Benefited from particle size analysis and shape evaluation with high speed dynamic image analysis apparatus, the evolution of particle shape along with stress was analyzed statistically, and shape factors including aspect ratio, sphericity and convexity increase with increasing pressure. Shape factors for particles with different sizes tend to reach a same value, which illustrated that the morphology of particle after breakage is scale independent and self-similar in this wide range of sizes. This paper analyzed the fractal feature after particle breakage, and found that the fractal dimension increases with increasing vertical stress, and eventually reaches the fractal ultimate breakage (D=2.5). This paper calculated the relative breakage by using Hardin’s and Einav’s methods, and found that relative breakage is increasing along with increasing pressure. The relative breakage is an exponent function with the pressure, which could be used to predict the relative breakage if the material and pressure are known. The increasing tendency with time is not obvious, because particle breakage is majorly caused by compression instead of creep.

Key words: coral sand, fractal, particle shape, creep, particle breakage

中图分类号: 

  • TU 411

[1] 王创业, 常新科, 刘沂琳, 郭文彬, . 单轴压缩条件下大理岩破裂过程声发射频谱 演化特征实验研究[J]. 岩土力学, 2020, 41(S1): 51-62.
[2] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[3] 庄心善, 赵汉文, 王俊翔, 黄勇杰, 胡智. 循环荷载下重塑弱膨胀土滞回曲线 形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.
[4] 梁珂, 陈国兴, 杭天柱, 刘抗, 何杨, . 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970.
[5] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[6] 褚福永, 朱俊高, 翁厚洋, 叶洋帆. 粗粒料级配缩尺后最大干密度试验研究[J]. 岩土力学, 2020, 41(5): 1599-1604.
[7] 陈琼, 崔德山, 王菁莪, 刘清秉. 不同固结状态下黄土坡滑坡滑 带土的蠕变试验研究[J]. 岩土力学, 2020, 41(5): 1635-1642.
[8] 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669.
[9] 韩超, 庞德朋, 李德建. 砂岩分级加卸载蠕变试验过程能量演化分析[J]. 岩土力学, 2020, 41(4): 1179-1188.
[10] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[11] 杨赫, 程卫民, 刘震, 王文玉, 赵大伟, 王文迪. 注水煤体有效渗流通道结构分形特征 核磁共振试验研究[J]. 岩土力学, 2020, 41(4): 1279-1286.
[12] 王青元, 刘杰, 王培涛, 刘飞, . 冲击扰动诱发蠕变岩石加速失稳破坏试验[J]. 岩土力学, 2020, 41(3): 781-788.
[13] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[14] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[15] 马维嘉, 陈国兴, 吴琪, . 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!