›› 2018, Vol. 39 ›› Issue (5): 1682-1690.doi: 10.16285/j.rsm.2016.1280

• 基础理论与实验研究 • 上一篇    下一篇

主动与被动状态下墙体侧向位移近似计算

谢 涛1, 2,罗 强1, 2,张 良1, 2,连继峰1, 2,于曰明1, 2   

  1. 1. 西南交通大学 土木工程学院,四川 成都 610031;2. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031
  • 收稿日期:2016-06-02 出版日期:2018-05-11 发布日期:2018-06-12
  • 通讯作者: 罗强,男,1963年生,博士,教授,主要从事路基工程及土力学方面的研究工作。E-mail: LQrock@swjtu.cn E-mail: 1535009557@qq.com
  • 作者简介:谢涛,男,1991年生,博士研究生,主要从事土力学及路基工程方面的学习与研究。
  • 基金资助:

    国家重点基础研究发展计划(973计划)(No. 2013CB036204);中国铁路总公司科技研究开发计划(No. 2014G003-A)。

Calculation of wall displacement to reach active or passive earth pressure state

XIE Tao1, 2, LUO Qiang1, 2, ZHANG Liang1, 2, LIAN Ji-feng1, 2, YU Yue-ming1, 2   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. MOE Key Laboratory of High-Speed Railway Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2016-06-02 Online:2018-05-11 Published:2018-06-12
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2013CB036204) and the Research and Development Program of China Railway (2014G003-A).

摘要: 极限状态下墙体侧向位移对土压力计算和支挡结构设计影响显著。根据Rankine变形体和Coulomb刚塑体模型,将墙后土体变形分别当作单剪和直剪试验中试样的剪切过程,以达到极限剪切变形(剪应变或单位长度剪切位移)作为进入主被动状态标准,构建了土体变形与墙体位移的几何关系,提出了反映土体变形与强度特性,同时考虑静止时初始应力状态影响的墙体极限侧向位移近似计算模型。分析表明:土体极限剪切变形、滑移区范围、初始应力状态是影响墙体极限位移的核心要素,其中极限剪切变形占据主导作用,是导致不同颗粒组成及密实程度土体进入极限状态所需墙体位移差异显著的主要原因,而主被动区范围不同和因静止土压力系数 1引起的初始剪切变形,则是被动状态墙体位移远大于主动的关键因素;算例中主动与被动状态下墙体位移与墙高之比分别介于0.5‰~13.2‰和?0.4%~?5.2%,且主动状态下细粒土墙体位移大于粗粒土,计算结果与工程经验及相关文献模型试验基本一致。

关键词: 主动与被动状态, 墙体侧向位移, Rankine与Coulomb理论, 土体极限剪切变形, 单剪与直剪试验

Abstract: The movement of wall plays an important role in the calculation of lateral earth pressure and the design of retaining structure. Regarding the process of backfill approach active or passive pressure state as the shearing process of soil sample in simple shear test or direct shear test, the backfill process reaches active or passive earth pressure state when the soil deformation equals to the ultimate value (shear strain in the simple test or shear displacement per unit length in the direct shear test). Based on the geometric relationship between the soil shear deformation and wall displacement, the theoretical calculation method of wall displacement required to reach active or passive earth pressure is provided, where the soil stress-strain behavior and initial stress state are considered. The analysis indicates that the magnitude of needed wall displacement to reach active or passive earth pressure is controlled by soil ultimate shear deformation, the range of active or passive zone, and the initial earth pressure state. The first factor is the most important among them, which contributes to variation of wall displacement among different soils. The wall displacement in passive state is greater than that in active state, because the range of passive zone is larger than that of active zone. The theoretically calculated wall displacement attaining active state is about 0.5‰~13.2‰ H (where H is the height of the wall), of which the non-cohesive soil is larger than the cohesive soil. As to the case of passive state, the wall displacement is ?0.4%~?5.2% H. The theories are concordant with the model test results from relevant literatures.

Key words: active or passive earth pressure state, displacement of wall, Rankine and Coulomb earth pressure theories, soil ultimate shear deformation, simple shear test, direct shear test

中图分类号: 

  • TU 470

[1] 徐 鹏,蒋关鲁,王 宁,雷 涛,王智猛,. 填土相对密实度对加筋土挡墙的影响研究[J]. , 2018, 39(11): 4010-4016.
[2] 肖 忠,王 琰,王元战,刘 莺, . 桶间距对四桶吸力式基础各单向承载力的影响及最优间距的确定[J]. , 2018, 39(10): 3603-3611.
[3] 杨 琪,张友谊,刘华强,秦 华,. 一种气泡轻质土路基受载-破坏模型试验[J]. , 2018, 39(9): 3121-3129.
[4] 王路君,艾智勇, . 非稳态热传导时层状路面体系的温度响应[J]. , 2018, 39(9): 3139-3146.
[5] 杨山奇,卢坤林,史克宝,赵瀚天,陈一鸣,. 刚性挡土墙后三维被动滑裂面的模型试验[J]. , 2018, 39(9): 3303-3312.
[6] 吴 纲,孙红月,付崔伟,陈永珍,汤碧辉,. 软土虹吸排水完整井非稳定流模型及解析解[J]. , 2018, 39(9): 3355-3361.
[7] 欧孝夺,全守岳,彭远胜,江 杰,吕 波,蒋 华,. 新型装配式基坑支护结构设计与试验[J]. , 2018, 39(9): 3433-3439.
[8] 赵明华,陈耀浩,杨超炜,肖 尧. 基于有限杆单元法的陡坡基桩非线性分析[J]. , 2018, 39(8): 3020-3028.
[9] 周 芬,梁 强,杜运兴. 单根无黏结预应力筋对加筋体力学性能的影响[J]. , 2018, 39(7): 2442-2450.
[10] 张玉伟,谢永利,翁木生,. 非对称基坑开挖对下卧地铁隧道影响的离心试验[J]. , 2018, 39(7): 2555-2562.
[11] 艾智勇,慕金晶, . 竖向简谐荷载下二维层状饱和地基的解析层元解[J]. , 2018, 39(7): 2632-2638.
[12] 王路君,艾智勇, . 地埋点热源作用下层状半空间的热-力耦合响应[J]. , 2018, 39(6): 2052-2058.
[13] 陈文强,赵宇飞,周纪军,. 考虑受压侧岩体反力非线性作用的锚杆抗剪理论[J]. , 2018, 39(5): 1662-1668.
[14] 付 晓,冀文有,张建经,曹礼聪,范 刚,. 锚索框架梁加固平面滑动型边坡地震动力响应[J]. , 2018, 39(5): 1709-1719.
[15] 刘成禹,陈淑云,. 基坑围护结构增量计算法的改进[J]. , 2018, 39(5): 1834-1839.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!