›› 2018, Vol. 39 ›› Issue (6): 1999-2007.doi: 10.16285/j.rsm.2017.1192

• 基础理论与实验研究 • 上一篇    下一篇

承压水位变动下深大基坑空间效应离心试验与数值模拟

胡 勇1,李云安1,李 波2,李从安2,肖捷夫1   

  1. 1. 中国地质大学(武汉) 工程学院,湖北 武汉 430074;2. 长江科学院 水利部岩土力学与工程重点实验室,湖北 武汉 430010
  • 收稿日期:2017-08-25 出版日期:2018-06-11 发布日期:2018-07-03
  • 通讯作者: 李云安,男,1965年生,博士后,教授,主要从事环境岩土工程和城市地质灾害方面的研究。E-mail: liyunan@cug.edu.cn E-mail: 344639126@qq.com
  • 作者简介:胡勇,男,1977年生,博士研究生,副教授,主要从事环境岩土工程与地下空间结构方面的研究
  • 基金资助:

    国家自然科学基金委与广东省联合基金重点项目(No.U1711266);国家重点研发计划项目(No.2017YFC1501301);国家自然科学基金项目(No.51308067);中央级公益性科研院所基本科研业务费(No.CKSF2016272/YT);广西重点实验室系统性研究项目(No.2016ZDK011)。

Centrifugal model tests and numerical simulation of three-dimensional space effect of deep and large foundation pit under the confined water level fluctuation

HU Yong1, LI Yun-an1, LI Bo2, LI Cong-an2, XIAO Jie-fu1   

  1. 1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 2. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, China
  • Received:2017-08-25 Online:2018-06-11 Published:2018-07-03
  • Supported by:

    This work was supported by the Key Program of Joint Fund of the National Natural Science Foundation of China and Guangdong Province (U1711266), the National Key R & D Project (2017YFC1501301), the National Natural Science Foundation of China (51308067), the Central Research Institutes of Basic Research and Public Service Special Operations (CKSF2016272/YT) and the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety (2016ZDK011).

摘要: 基坑工程是典型的三维空间问题,只有在一定条件下才能简化为平面应变问题。针对基坑工程的空间效应问题,首先采用离心模型试验建立基坑工程三维模型,分析承压水位变动条件下基坑变形规律;然后,进一步开展三维数值模拟,与离心模型试验结果进行对比验证,并开展基坑长度、开挖深度、承压水位高度和基坑面积等因素对基坑三维空间效应的影响研究。研究表明:三维基坑离心模型试验监测得到基坑中部和角部断面处的地连墙水平位移以及基坑外侧地表沉降,验证了角隅效应,且承压水位上升时角隅效应更显著;影响因素分析表明,长江I级阶地中当基坑长度大于6倍开挖深度时,基坑中间断面基本为平面应变状态;随开挖深度逐渐增大时平面应变比显著增大,而当深度大于25 m时增大速率减缓;承压水位升高时角隅效应更显著,承压水位超出地表3 m时平面应变比为0.46。该研究成果为长江I阶地典型二元结构地层深大基坑的设计和施工提供依据。

关键词: 深大基坑, 承压水位, 空间效应, 离心试验, 数值模拟

Abstract: The deformation of foundation pit is considered as a typical three-dimensional (3D) space problem, but it can be simplified as a plane strain problem under specific conditions. Through 3D centrifugal model tests of a foundation pit, the deformation laws of the middle and the corner of the long side of the foundation pit were achieved under the fluctuation of the confined water level. Then 3D numerical simulation was further carried out, and the obtained results were compared with the results from the centrifugal model test. The numerical method was also used to analyse the effects of foundation pit length, excavation depth, confined water level and foundation pit area on the 3D space of foundation pit. The results showed that the corner effect was verified by the horizontal displacements at different sections of the ground wall and the surface settlement outside the foundation pit. When the length of the foundation pit was more than six times the excavation depth in Yangtze River Terrace I, the middle section of the foundation pit was basically in the plane strain state. As the excavation depth increased, the plane strain ratio increased significantly. However, the increase rate slowed down when the depth was greater than 25 m. The corner effect was more obvious with increasing confined water level, and the plane strain ratio reached 0.46 when the level exceeded 3 m. The research results provide the basis for the design and construction of the deep and large foundation pit in the typical binary structure strata of the Yangtze River Terrace I.

Key words: deep and large foundation pit, refined water level, space effect, centrifugal model test, numerical simulation

中图分类号: 

  • TU 472

[1] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[2] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[3] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[4] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[5] 张雪东, 蔡红, 魏迎奇, 张紫涛, 梁建辉, 胡晶. 基于动力离心试验的软基尾矿库地震响应研究[J]. 岩土力学, 2020, 41(4): 1287-1294.
[6] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[7] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[8] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[9] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[10] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[11] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[12] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[13] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[14] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[15] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!