›› 2018, Vol. 39 ›› Issue (6): 2124-2130.doi: 10.16285/j.rsm.2016.2203

• 基础理论与实验研究 • 上一篇    下一篇

石膏矿岩水致老化效应试验

周意超1, 2,陈从新1,刘秀敏1,段淑倩1,张海娜1,夏开宗1   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 长沙理工大学 土木工程学院,湖南 长沙 410076
  • 收稿日期:2016-11-14 出版日期:2018-06-11 发布日期:2018-07-03
  • 作者简介:周意超,女,1989年生,博士研究生,主要从事边坡工程和地下工程等方面的研究工作。
  • 基金资助:

    国家自然科学基金面上项目(No.51274188)

Experiments on ageing effect of gypsum rock induced by water

ZHOU Yi-chao1, 2, CHEN Cong-xin1, LIU Xiu-min1, DUAN Shu-qian1, ZHANG Hai-na1, XIA Kai-zong1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. School of Civil Engineering, Changsha University of Science & Technology, Changsha, Hunan 410076, China
  • Received:2016-11-14 Online:2018-06-11 Published:2018-07-03
  • Supported by:

    This work was supported by the General Program of National Natural Science Foundation of China (51274188).

摘要: 为研究石膏岩的水致老化效应,在室内模拟石膏矿采空区的水环境条件,包括不同空气湿度环境和饱和地下水环境。将石膏岩岩样置于其中,定期取出测定其力学性质指标,得到石膏岩老化的宏观力学表现,并结合核磁共振技术测定试验过程中石膏岩岩样内部的孔隙结构变化,分析石膏岩的水致老化机制。研究结果表明,水对石膏岩的老化效应具有显著的影响。老化程度随时间递增,石膏岩的单轴抗压强度、巴西抗拉强度和弹性模量与置于水环境中的时间基本呈负指数关系,泊松比则无明显变化规律;石膏岩老化程度和老化速率与水的状态密切相关。相对湿度越高,石膏岩的老化越显著,老化速率也更快,尤其是被液态水浸泡时,石膏岩的老化最显著,老化速率最快。水对石膏岩的老化过程是水的物理作用与化学作用的耦合,而化学作用是水致石膏岩老化的根本原因。石膏岩与水接触时,石膏的溶解、重结晶作用的不断进行改变着石膏岩的矿物组成结构,使其结构由紧密变得松散,孔隙率增大,力学性质不断弱化。该试验研究结果可为石膏矿开采的设计及采后空区的长期稳定性评估提供参考。

关键词: 石膏岩, 老化效应, 核磁共振, 溶解, 重结晶, 相对湿度

Abstract: To investigate the water-induced ageing effect on gypsum rock, different water environment conditions were simulated in the laboratory, including different air humidity conditions and saturated groundwater conditions which may exist in the gypsum mines. Mechanical parameters of gypsum rock specimens were obtained under the pre-set conditions for different times. Meanwhile, the variation of pore structure in gypsum rock specimens was measured by nuclear magnetic resonance equipment. Then, the water-induced ageing mechanism of the gypsum rock was revealed. The results showed that the effect of water on the ageing of gypsum rock was obvious. Firstly, the ageing extent of gypsum rock increased with time, whereas mechanical parameters including uniaxial compressive strength, Brazilian tensile strength and elastic modulus decreased with time in a negative exponential relation. However, the Poisson’s ratio of gypsum rock had no clear relation with time. Secondly, the ageing extent and ageing rate of gypsum rock were closely related to the state of water. The higher the relative humidity was, the more pronounced the ageing extent was and the faster the ageing rate was. In particular, the ageing extent of gypsum rock was the most significant and its ageing rate was also the fastest when fully submerged in water. Generally, the water-induced ageing mechanism of gypsum rock was caused by the coupling of physical and chemical effects of water, and the chemical effect was the primary cause for the ageing effect. When the gypsum rock was exposed to water, the continuous dissolution and recrystallisation of the gypsum rock changed the mineral composition of the gypsum rock. As a result, the rock structure became loose, the porosity increased, and mechanical properties gradually weakened. The research results provide references for designing the gypsum mining and the evaluation of the long-term stability of gypsum goaf.

Key words: gypsum rock, ageing effect, nuclear magnetic resonance, dissolution, recrystallization, relative humidity

中图分类号: 

  • TU 452
[1] 陈 钒,吴建勋,任 松,欧阳汛,王 亮,范金洋,. 基于湿度应力场理论的硬石膏岩膨胀试验研究[J]. , 2018, 39(8): 2723-2731.
[2] 冯上鑫,柴军瑞,许增光,覃 源,陈 玺. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. , 2018, 39(8): 2886-2894.
[3] 陶高梁,李 进,庄心善,肖衡林,崔惜琳,徐维生. 利用土中水分蒸发特性和微观孔隙分布规律确定SWCC残余含水率[J]. , 2018, 39(4): 1256-1262.
[4] 蒋 翔,钱 昆,王小书,高思娴,谢凯楠,姜德义,. 基于声发射与NMR的超临界CO2 对砂岩力学特性影响研究[J]. , 2018, 39(4): 1355-1361.
[5] 任 松,李振元,邓高岭,刘 伟,蒲文明,. 多因素作用下石膏岩软化特性[J]. , 2018, 39(3): 789-796.
[6] 陶高梁,柏 亮,袁 波,甘世朝. 土-水特征曲线与核磁共振曲线的关系[J]. , 2018, 39(3): 943-948.
[7] 夏开宗,陈从新,宋许根,刘秀敏,周意超, . 相对湿度作用下的石膏矿护顶层突变破坏机制分析[J]. , 2018, 39(2): 589-597.
[8] 任 松, 吴建勋, 欧阳汛, 刘 戎, 王 亮, . 压力水作用下硬石膏岩膨胀性研究[J]. 岩土力学, 2018, 39(12): 4351-4359.
[9] 卢海锋,陈 盼,韦昌富,. 脱湿条件下黏性土吸力强度演化规律及其微观机理[J]. , 2017, 38(S2): 145-150.
[10] 刘秀敏,蒋玄苇,陈从新,夏开宗,周意超,宋许根, . 天然与饱水状态下石膏岩蠕变试验研究[J]. , 2017, 38(S1): 277-283.
[11] 任 松,邓高岭,吴建勋,陈 结. 石膏岩淡水浸泡软化试验研究[J]. , 2017, 38(4): 943-950.
[12] 张军伟,姜德义,陈 结 ,赵云峰,程艳飞,. 复杂卸荷条件下卤水流量对盐岩溶解损伤特征研究[J]. , 2017, 38(3): 640-648.
[13] 周意超,陈从新,刘秀敏,潘玉丛,夏开宗,蒋玄苇,. 荆门石膏矿岩遇水软化力学特性试验研究[J]. , 2017, 38(10): 2847-2854.
[14] 唐巨鹏,田虎楠,于 宁,丁佳会. 瓦斯压力对煤系页岩瓦斯吸附特性影响核磁共振谱试验研究[J]. , 2016, 37(S2): 203-208.
[15] 周英博,张玉军. 压力溶解对颗粒聚集岩体中热-水-应力耦合作用的弹塑性有限元分析[J]. , 2016, 37(6): 1781-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 蒋水华 ,祁小辉 ,曹子君 ,李典庆 , . 基于随机响应面法的边坡系统可靠度分析[J]. , 2015, 36(3): 809 -818 .
[2] 罗润林,阮怀宁,朱珍德,朱昌星. 锦屏二级水电站岩石夹层非定常参数剪切蠕变模型及参数识别研究[J]. , 2006, 27(S2): 239 -243 .
[3] 刘 健,张载松,韩 烨,吴 星. 考虑黏度时变性的水泥浆液盾构壁后注浆扩散规律及管片压力模型的试验研究[J]. , 2015, 36(2): 361 -368 .
[4] 岑威钧,朱岳明,王修信. 一类新型的散粒型土体本构理论[J]. , 2007, 28(9): 1801 -1806 .
[5] 王 伟,李小春,石 露,方志明. 深层岩体松动爆破中不耦合装药效应的探讨[J]. , 2008, 29(10): 2837 -2842 .
[6] 李宏恩 ,李同春 ,田景元 ,李 成 ,梁 栋 . 黏-弹性人工边界在双江口土石坝动力分析中的应用[J]. , 2008, 29(S1): 189 -192 .
[7] 杨生彬,刘志伟,李 灿. 大厚度饱和砂土液化治理试验研究[J]. , 2009, 30(S2): 430 -433 .
[8] 蒋明镜 ,孙渝刚. 人工胶结砂土力学特性的离散元模拟[J]. , 2011, 32(6): 1849 -1856 .
[9] 黄大维 ,周顺华,刘重庆,陈天文. 护壁套管钻孔灌注桩微扰动施工分析[J]. , 2013, 34(4): 1103 -1108 .
[10] 秦立科,李云璋,胡 伟. 非饱和黄土结构性定量试验研究[J]. , 2011, 32(S1): 265 -269 .