›› 2018, Vol. 39 ›› Issue (7): 2574-2582.doi: 10.16285/j.rsm.2016.2246

• 岩土工程研究 • 上一篇    下一篇

复杂大气环境作用下高铁路基水分迁移响应

黎瀚文1, 2,张璐璐1, 3,冯世进4,郑文棠5   

  1. 1. 上海交通大学 海洋工程国家实验室,上海 200240;2. 高新船舶与深海开发装备协同创新中心,上海 200240;3. 上海交通大学 土木工程系,上海 200240;4. 同济大学 地下工程系,上海 200240;5. 中国能源建设集团广东省电力设计研究院有限公司,广东 广州 510663
  • 收稿日期:2016-09-23 出版日期:2018-07-10 发布日期:2018-08-05
  • 通讯作者: 张璐璐,女,1978年生,博士,教授,主要从事岩土工程灾害和风险控制的研究工作。E-mail: lulu_zhang@sjtu.edu.cn E-mail: li.hanwen@outlook.com
  • 作者简介:黎瀚文,男,1992年生,硕士研究生,主要从事岩土工程理论分析方面的研究工作。
  • 基金资助:

    国家重点基础研究发展计划项目(973计划)(No. 2014CB049100);国家自然科学基金项目(No. 51422905,No.41372275,No.51679135);中组部青年拔尖人才计划。

Moisture migration in a high-speed railway embankment under complex atmospheric environment

LI Han-wen1, 2, ZHANG Lu-lu1, 3, FENG Shi-jin4, ZHENG Wen-Tang5   

  1. 1. State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China; 2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China; 3. Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China; 4. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 5. China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou, Guangdong 510663, China
  • Received:2016-09-23 Online:2018-07-10 Published:2018-08-05
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2014CB049100), the National Natural Science Foundation of China (51422905, 41372275, 51679135) and the National Program for Support of Top-notch Young Professionals.

摘要: 高铁路基作为列车和轨道结构支承体,直接暴露在复杂大气环境中,受降雨、蒸发等长期循环作用,含水率、基质吸力和剪切强度响应复杂,影响路基长期稳定性。建立了考虑大气作用的水-热耦合高铁路基水分迁移计算模型,通过法国鲁昂路基现场试验案例分析验证了计算模型。利用北京、上海两地2013年实测气象数据,对高铁路基含水率响应进行计算,研究了不同气候和填料类型对体积含水率变化的影响。结果表明:填料和气候类型对路基含水率响应影响显著。大气对砂土路基影响深度较浅(深度<3.0 m),浅层(深度≤1.0 m)受大气环境影响非常显著,含水率波动范围较大;粉土和黏土路基的含水率受大气影响的深度较深,超过3 m深度,但含水率波动范围较小。北京气候条件下路基含水率季节性差异较大,上海气候条件下路基含水率随单次降雨波动更明显。

关键词: 高铁路基, 降雨, 蒸发, 水分迁移

Abstract: High-speed railway embankment as the supporting body of the train and track is directly exposed to the complex climate conditions such as the rainfall, evaporation and other environmental events. These conditions change the water content, suction and shear strength of the filling soil, and further affect the stability of the embankment. A moisture migration model of the high-speed railway embankment with considering environmental effects is proposed. The model is verified by comparing with the measured data of a highway embankment in Rouen, France. Based on the meteorological data of Beijing and Shanghai in 2013, the volumetric water content (VWC) response of the high-speed railway embankment is calculated to investigate effects of climate conditions and soil types. The result shows that, the soil type and climate condition significantly affect the moisture variation of high-speed railway embankment. The influential depth of atmospheric environment on the VWC of sandy embankment is small, but the shallow embankment is affected by the atmospheric environment significantly with a large amplitude of VWC fluctuation. The influential depths of atmospheric environment on the VWC of silty and clayey embankment are relatively deep, but the amplitude of VWC fluctuation is small at every depth. The VWC of embankment under weather condition of Beijing has a huge seasonal variation and the VWC of embankment under weather condition of Shanghai fluctuates significantly with each rainfall.

Key words: high-speed railway, embankment, rainfall, evaporation, moisture variation

中图分类号: 

  • U 416.1

[1] 赵久彬, 刘元雪, 何少其, 杨骏堂, 柏准, . 三峡库区阶跃变形滑坡水平位移与降雨量 数学统计模型[J]. 岩土力学, 2020, 41(S1): 305-311.
[2] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[3] 张明礼, 温智, 董建华, 王得楷, 岳国栋, 王斌, 高樯. 考虑降雨作用的多年冻土区不同地表土质 活动层水热过程差异分析[J]. 岩土力学, 2020, 41(5): 1549-1559.
[4] 简文彬, 黄聪惠, 罗阳华, 聂闻. 降雨入渗下非饱和坡残积土湿润锋运移试验研究[J]. 岩土力学, 2020, 41(4): 1123-1133.
[5] 黄晓虎, 易武, 黄海峰, 邓永煌. 优势流入渗与坡体变形关系研究及应用[J]. 岩土力学, 2020, 41(4): 1396-1403.
[6] 史振宁, 戚双星, 付宏渊, 曾铃, 何忠明, 方睿敏, . 降雨入渗条件下土质边坡含水率分 布与浅层稳定性研究[J]. 岩土力学, 2020, 41(3): 980-988.
[7] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[8] 刘丽, 吴羊, 陈立宏, 刘建坤, . 基于数值模拟的湿润锋前进法测量精度分析[J]. 岩土力学, 2019, 40(S1): 341-349.
[9] 陈宇龙, 内村太郎, . 基于弹性波波速的降雨型滑坡预警系统[J]. 岩土力学, 2019, 40(9): 3373-3386.
[10] 黄晓虎, 雷德鑫, 夏俊宝, 易武, 张鹏, . 降雨诱发滑坡阶跃型变形的预测分析及应用[J]. 岩土力学, 2019, 40(9): 3585-3592.
[11] 詹良通, 胡英涛, 刘小川, 陈捷, 王瀚霖, 朱斌, 陈云敏. 非饱和黄土地基降雨入渗离心模型试验 及多物理量联合监测[J]. 岩土力学, 2019, 40(7): 2478-2486.
[12] 王震, 朱珍德, 陈会官, 朱姝, . 冻融作用下岩石力-热-水耦合本构模型研究[J]. 岩土力学, 2019, 40(7): 2608-2616.
[13] 张明礼, 温 智, 董建华, 王得楷, 侯彦东, 王 斌, 郭宗云, 魏浩田, . 考虑降雨作用的气温升高对多年冻土 活动层水热影响机制[J]. 岩土力学, 2019, 40(5): 1983-1993.
[14] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
[15] 江强强, 焦玉勇, 宋亮, 王浩, 谢壁婷, . 降雨和库水位联合作用下库岸滑坡模型试验研究[J]. 岩土力学, 2019, 40(11): 4361-4370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!