›› 2018, Vol. 39 ›› Issue (7): 2671-2680.doi: 10.16285/j.rsm.2017.0596

• 数值分析 • 上一篇    下一篇

颗粒离散单元法动力人工边界设置方法

周兴涛1, 2,盛 谦1, 2,崔 臻1,冷先伦1,付晓东1,马亚丽娜1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049
  • 收稿日期:2017-04-01 出版日期:2018-07-10 发布日期:2018-08-05
  • 作者简介:周兴涛,男,1987年生,博士研究生,主要从事地下工程抗震及边坡动力稳定性方面的研究工作。
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2015CB057905);国家重点研发计划(No. 2016YFC0401803);国家自然科学基金资助项目(No.51409263,No. 11472292)。

Dynamic artificial boundary setting methods for particle discrete element method

ZHOU Xing-tao1, 2, SHENG Qian1, 2, CUI Zhen1, LEN Xian-lun1, FU Xiao-dong1, MA Ya-li-na1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-04-01 Online:2018-07-10 Published:2018-08-05
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2015CB057905), the National Key Research and Development Program of China (2016YFC0401803) and the National Natural Science Foundation of China (51409263, 11472292).

摘要: 采用颗粒离散单元法进行动力计算时,人工截断边界上需设置吸收边界条件,以防止波的反射。鉴于颗粒离散单元数值计算模型的人工边界上颗粒单元半径大小不一、边界面凸凹不平,在连续介质的黏性、黏弹性、自由场边界条件方程基础之上,推导出适用于离散介质的等效方程。在离散介质的黏性边界条件等效方程中引入微调系数,提出比值迭代法以快速确定其最优值,以实现对波的最佳吸收。采用二维颗粒离散单元计算软件PFC2D,分别建立黏性、黏弹性、自由场边界条件相关数值分析模型,探讨颗粒分布模式对黏性边界上颗粒单元半径、速度分布及比值迭代过程的影响;采用外源波动算例及经典Lamb问题算例验证黏弹性边界设置方法的正确性;通过隧洞算例检验提出的自由场边界条件设置方法的正确性。

关键词: 颗粒离散单元法, 动力人工边界, 黏性边界, 黏弹性边界, 自由场边界

Abstract: When dynamic time-history calculations are carried out by using the particle discrete element method (DEM), the absorption boundary condition must be applied to avoid the reflection of outward propagating waves back into the model at artificial boundaries. By considering the various radius of particle elements on the artificial boundaries and their uneven boundary surfaces, the equivalent equations for DEM is obtained based on the boundary conditions of the viscous and viscoelastic continuum and free field. Calibration factors are introduced into the equivalent equation of viscous boundary condition for DEM, and a ratio-iterative method is proposed to determine the values for optimum waves absorption quickly. Numerical models for the viscous, viscoelastic and free-field boundaries are established using the 2D particle flow code (PFC2D). We also analyze the effects of particle distribution patterns on the radius and velocity of particles on the viscous boundary and the process of the ratio-iterative method. The validity of the setting method for viscoelastic boundary condition is verified with examples of the external source problem and the Lamb problem. The free-field boundary for DEM is applied to a tunnel example for the validation.

Key words: particle discrete element method, dynamic artificial boundaries, viscous boundary, viscous-spring boundary, free-field boundary

中图分类号: 

  • O 242

[1] 尹训强,金煜皓,王桂萱,. 考虑土-结构相互作用效应和土质地基非线性的核岛厂房结构地震响应分析[J]. , 2017, 38(4): 1114-1120.
[2] 陈灯红 ,杜成斌,. 结构-地基动力相互作用的时域模型[J]. , 2014, 35(4): 1164-1172.
[3] 杨岳峰、梁正召、唐春安、. 冲击作用下的压头破岩机制研究[J]. , 2013, 34(6): 1775-1785.
[4] 卓 莉 ,何江达 ,谢红强 ,肖明砾 . 不同边界和地基条件的大型滑坡体动力响应分析[J]. , 2012, 33(11): 3419-3425.
[5] 仇敏玉,俞亚南. 道路行车荷载影响深度分析[J]. , 2010, 31(6): 1822-1826.
[6] 邹德高 ,徐 斌 ,孔宪京 . 边界条件对土石坝地震反应的影响研究[J]. , 2008, 29(S1): 101-106.
[7] 胡再强,王军星,刘兰兰,焦黎杰. 褥垫层作用下复合地基抗震性能有限元分析[J]. , 2008, 29(S1): 587-592.
[8] 陈健云 ,李 静 ,李建波 . 动力分析中无限地基两种近似方法的应用研究[J]. , 2006, 27(3): 373-377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!