›› 2018, Vol. 39 ›› Issue (8): 2755-2764.doi: 10.16285/j.rsm.2016.2411

• 基础理论与实验研究 • 上一篇    下一篇

干旱环境下土遗址夯补支顶加固变形机制室内试验研究

裴强强1, 2, 3,王旭东1, 2, 3,郭青林2, 3,张 博2, 3,赵国靖2, 3,赵建忠2, 3   

  1. 1. 兰州大学 西部灾害与环境力学教育部重点实验室,甘肃 兰州,730000; 2. 敦煌研究院 国家古代壁画与土遗址保护工程技术研究中心,甘肃 敦煌,736200; 3. 敦煌研究院 甘肃省古代壁画与土遗址保护研究重点实验室,甘肃 敦煌,736200
  • 收稿日期:2016-10-13 出版日期:2018-08-11 发布日期:2018-09-02
  • 通讯作者: 王旭东,男,1967年生,博士,研究员,博士生导师,主要从事石窟寺壁画与土遗址保护和研究工作。E-mail: wxd23@hotmail.com E-mail: peiqiangq@163.com
  • 作者简介:裴强强,男,1981年生,博士研究生,副研究馆员,主要从事石窟建筑、土遗址保护和研究工作。
  • 基金资助:

    国家文物局文物保护科技优秀青年研究计划(No. 20140225);甘肃省创新团队计划课题(No. 145RJIF336)。

Laboratory test of deformation mechanism of rammed roof-propping reinforcement at earthen heritage sites in arid environment

PEI Qiang-qiang1, 2, 3, WANG Xu-dong1, 2, 3, GUO Qing-lin2, 3, ZHANG Bo2, 3, ZHAO Guo-jing2, 3, ZHAO Jian-zhong2, 3   

  1. 1. Key Laboratory of Mechanics on Disaster and Environment in Western China of Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000 China; 2. National Technological Research Center for Conservation of Ancient Wall Paintings and Earthen Heritage Sites, Dunhuang Academy, Dunhuang, Gansu 736200, China; 3. Key Laboratory of Conservation and Research for Ancient Murals and Earthen Heritage Sites of Gansu Province, Dunhuang Academy, Dunhuang, Gansu 736200, China
  • Received:2016-10-13 Online:2018-08-11 Published:2018-09-02
  • Supported by:

    This work was supported by the Cultural Relics Protection Science and Technology Outstanding Youth Research Program of National Administration of Cultural Heritage (20140225) and the Funds Innovation Research Team of Gansu Province(145RJIF336).

摘要: 在自然力和人为活动影响下,地处干旱半干旱地区的长城、交河故城、北庭故城等土遗址,其墙体根部因掏蚀而大面积悬空,甚至造成局部区域坍塌。针对夯土遗址根部严重掏蚀问题,采用夯筑支顶加固措施既符合文物保护的基本原则,也遵循保存原材料与原工艺的要求,且加固效果显著。然而大体积夯筑支顶体在固结和失水干缩作用下,与原遗址墙体之间形成较大的裂隙,宽度达1~3 cm。如何控制和减小夯补体与原遗址体之间的收缩缝隙,成为实现大体积夯筑砌补加固的关键。基于固结理论和失水收缩特性,在室内制作不同密度和级配的试块进行固结试验,以及不同形状土样试验的失水收缩量的数据统计,对比分析不同密度、级配条件固结变形、干缩变形的特征,拟合基于传统夯筑工艺的夯补支顶体固结、干缩变形的阈值,初步摸索出了预控大体积垂直方向变形的经验式,为预判大体积夯筑支顶体沉降机制提供可靠的理论依据。

关键词: 土遗址, 夯筑支顶, 固结, 干缩

Abstract: Under the influence of natural forces and human activities, earthen heritage sites in arid and semi-arid regions like Great Wall, Jiaohe Ruinsy, Beiting Ruins were hanged in the air largely by sapping at the base of the wall even causing partial collapse. In this study, rammed heritage sites with serious basal sapping were consolidated by rammed roof-propping, which conformed with basic conservation principles of cultural heritage sites protection and followed the requirement to conserve original material and technology, and also had good reinforcement effect. However, large-sized rammed roof-propping body produced big crack in 1-3 mm width from the original wall under the effect of consolidation and dehydration. Control and reduction of shrinking cracks between roof-propping body and original wall were the key to realize reliability and effectiveness of large-sized ramming repair. Based on the theory of consolidation and dehydration, this study conducted consolidation test with different density and gradation samples indoor, and collected the data of dehydration shrinkage of samples with different shapes. This study made a comparative analysis of the regulation of consolidation deformation and dehydration deformation in the condition of different densities and different clay particle gradations, and analyzed threshold value of consolidation and dehydration deformation for roof-propping body, according to traditional rammed technology and laboratory empirical formula. The empirical formula to control large-sized vertical deformation was preliminarily proposed, which can provide theoretical references for controlling shrinkage settlement of large-sized rammed roof-propping body.

Key words: earthen sites, rammed roof-propping, consolidation, shrinkage

中图分类号: 

  • TU 433

[1] 庄心善, 赵汉文, 王俊翔, 黄勇杰, 胡智. 循环荷载下重塑弱膨胀土滞回曲线 形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.
[2] 孙德安, 薛垚, 汪磊, . 变荷载作用下考虑半透水边界热传导性的 一维饱和土热固结特性研究[J]. 岩土力学, 2020, 41(5): 1465-1473.
[3] 李红坡, 梅国雄, 肖涛, 陈征. 涂抹区重叠竖井地基固结特性研究[J]. 岩土力学, 2020, 41(5): 1560-1566.
[4] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[5] 陈琼, 崔德山, 王菁莪, 刘清秉. 不同固结状态下黄土坡滑坡滑 带土的蠕变试验研究[J]. 岩土力学, 2020, 41(5): 1635-1642.
[6] 师旭超, 孙运德. 线性卸荷作用下软土超孔隙水压力 变化规律分析[J]. 岩土力学, 2020, 41(4): 1333-1338.
[7] 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387.
[8] 任宇晓, 闫玥, 付登锋. 浅层地基上管道轴向运动的阻力研究[J]. 岩土力学, 2020, 41(4): 1404-1411.
[9] 刘建民, 邱月, 郭婷婷, 宋文智, 谷川, . 饱和粉质黏土静剪强度与振动后 静剪强度对比研究[J]. 岩土力学, 2020, 41(3): 773-780.
[10] DAO Minh-huan, 刘清秉, 黄伟, 项伟, 王臻华, . 膨润土加砂混合物干燥收缩特征及缩裂机制研究[J]. 岩土力学, 2020, 41(3): 789-798.
[11] 郎瑞卿, 杨爱武, 闫澍旺, . 修正等应变假定下刚性桩复合地基固结特性分析[J]. 岩土力学, 2020, 41(3): 813-822.
[12] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[13] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[14] 蒙宇涵, 张必胜, 陈征, 梅国雄, . 线性加载下含砂垫层地基固结分析[J]. 岩土力学, 2020, 41(2): 461-468.
[15] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!