›› 2018, Vol. 39 ›› Issue (S1): 89-97.doi: 10.16285/j.rsm.2017.1944

• 基础理论与实验研究 • 上一篇    下一篇

赤泥改性黄土的基本工程性质研究

陈瑞锋1,2,3,田高源1,2,3,米栋云1,2,3,董晓强1,2,3   

  1. 1. 山西省交通科学研究院 黄土地区公路建设与养护技术交通行业重点实验室,山西 太原 030006; 2. 山西省交通科学研究院 黄土地区公路建设与养护技术山西省重点实验室,山西 太原 030006; 3. 太原理工大学 建筑与土木工程学院,山西 太原 030024
  • 收稿日期:2017-09-25 出版日期:2018-07-20 发布日期:2018-09-02
  • 通讯作者: 董晓强,男,1974 年生,博士,教授,主要从事环境岩土工程方面的研究。E-mail: dongxiaoqiang@tyut.edu.cn E-mail:15735651673@163.com
  • 作者简介:陈瑞锋,女,1992年生,硕士研究生,主要从事环境岩土工程方面的研究工作。
  • 基金资助:

    黄土地区公路建设与养护技术交通行业重点实验室开放基金项目(No. KLTLR-Y13-4);山西省回国留学人员科研项目(No. 2017-039);山西省应用基础研究项目(No. 201701D121121)

Study of basic engineering properties of loess modified by red mud

CHEN Rui-feng1,2,3, TIAN Gao-yuan1,2,3, MI Dong-yun1,2,3, DONG Xiao-qiang1,2,3   

  1. 1. Key Laboratory of Highway Construction & Maintenance Technology in Loess Region, Ministry of Transport, Shanxi Transportation Research Institute, Taiyuan, Shanxi 030006, China; 2. Shanxi Key Laboratory of Highway Construction & Maintenance Technology in Loess Region, Shanxi Transportation Research Institute, Taiyuan, Shanxi 030006, China; 3. College of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2017-09-25 Online:2018-07-20 Published:2018-09-02
  • Supported by:

    This work was supported by the Opening Fund Project for Key Laboratory of Highway Construction & Maintenance Technology in Loess Region, Ministry of Transport(KLTLR-Y13-4), the Research Project Supported by Shanxi Scholarship Coucil of China(2017-039), and the Applied Basic Research Programs of Shanxi(201701D121121).

摘要: 为探究赤泥改性黄土的基本工程特性,进行无侧限抗压试验、直剪试验及渗透试验,得出赤泥改性黄土的最佳配比,建立了抗剪强度、无侧限抗压强度与电阻率的经验公式。通过动三轴试验,分析了循环动荷载下改性黄土的累积塑性变形、动弹性模量及浸出毒性。结果表明,随赤泥含量增加,改性黄土无侧限抗压强度和黏聚力都先增大后减小,当赤泥含量为15%时其28 d无侧限抗压强度达到3.5 MPa,较不掺入赤泥时提高约34.7%;改性黄土的渗透系数随赤泥含量增加先快速降低,至赤泥含量5%后趋于稳定;改性黄土的抗剪强度、无侧限抗压强度与电阻率呈良好的线性关系;改性黄土在循环动荷载下的临界动应力达600 kPa,最大动弹性模量比未改性黄土高出6倍,且其浸出液不具有浸出毒性。

关键词: 赤泥改性黄土, 无侧限抗压强度, 抗剪强度, 电阻率, 动弹性模量

Abstract: In order to explore the basic engineering characteristics of loess modified by red mud, of which the optimum ratio is obtained based on unconfined compression test, direct shear test and seepage test; and then an empirical formula for shear strength, unconfined compression strength and resistivity is established. The cumulative plastic deformation, dynamic elasticity modulus and leaching toxicity of the modified loess under cyclic dynamic loading are analyzed by dynamic triaxial test. The results show that with the increase of red mud content, the unconfined compressive strength and cohesion of the modified loess first increased and then decreased; and when the amount of red mud is near 15%, the unconfined compression strength of 28 d reached 3.5 MPa, which is improved by about 34.7% than no red mud. The permeability coefficient decreased rapidly with the increase of red mud content, and reached the stability when the amount of red mud is 5%. There is a good linear relationship between the shear strength, unconfined compressive strength and resistivity. The critical dynamic stress of the modified loess reaches 600 kPa under cyclic dynamic loading, of which the maximum dynamic electricity modulus is 6 times ones of loess. The leaching solution of the modified soil does not have the toxicity of leaching.

Key words: loess modified by red mud, unconfined compression strength, shear strength, resistivity, dynamic elasticity modulus

中图分类号: 

  • TU444

[1] 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155.
[2] 刘杰, 杨玉婳, 姚海林, 卢正, 岳婵, . 基于不同改性方法的分散性黏土处治试验研究[J]. 岩土力学, 2020, 41(S1): 163-170.
[3] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[4] 瑜璐, 杨庆, 杨钢, 张金利. 塑性极限分析鱼雷锚锚尖贯入阻力[J]. 岩土力学, 2020, 41(6): 1953-1962.
[5] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
[6] 刘建民, 邱月, 郭婷婷, 宋文智, 谷川, . 饱和粉质黏土静剪强度与振动后 静剪强度对比研究[J]. 岩土力学, 2020, 41(3): 773-780.
[7] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
[8] 李小刚, 朱长歧, 崔翔, 张珀瑜, 王睿, . 含碳酸盐混合砂的三轴剪切试验研究[J]. 岩土力学, 2020, 41(1): 123-131.
[9] 张晨阳, 谌民, 胡明鉴, 王新志, 唐健健, . 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(S1): 195-202.
[10] 王欢, 陈群, 王红鑫, 张文举, . 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(S1): 224-230.
[11] 高运昌, 高盟, 尹诗, . 聚氨酯固化海砂的静力特性试验研究[J]. 岩土力学, 2019, 40(S1): 231-236.
[12] 陈卫忠, 雷江, 于洪丹, 李翻翻, 马永尚, 闫宪洋, . 黏土岩饱和过程中水分运移规律试验研究[J]. 岩土力学, 2019, 40(9): 3327-3334.
[13] 郑耀林, 章荣军, 郑俊杰, 董超强, 陆展, . 絮凝-固化联合处理超高含水率 吹填淤泥浆的试验研究[J]. 岩土力学, 2019, 40(8): 3107-3114.
[14] 沈泰宇, 汪时机, 薛乐, 李贤, 何丙辉, . 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8): 3115-3124.
[15] 闫亚景, 闫永帅, 赵贵章, 张泰丽, 孙强, . 基于高密度电法的天然边坡水分运移规律研究[J]. 岩土力学, 2019, 40(7): 2807-2814.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!