›› 2018, Vol. 39 ›› Issue (9): 3203-3212.doi: 10.16285/j.rsm.2016.3009

• 基础理论与实验研究 • 上一篇    下一篇

考虑钙质砂细观颗粒形状影响的液体拖曳力系数试验

吴 野,王 胤,杨 庆   

  1. 大连理工大学 海岸和近海工程国家重点实验室,辽宁 大连 116024
  • 收稿日期:2016-12-29 出版日期:2018-09-11 发布日期:2018-10-08
  • 通讯作者: 杨庆,男,1964年生,博士,教授,主要从事岩土工程及工程地质方面的研究工作。E-mail: qyang@dlut.edu.cn E-mail:13795135125@163.com
  • 作者简介:吴野,男,1991年生,硕士,主要从事海洋土试验研究方面的工作。
  • 基金资助:

    国家自然科学基金(No.41572252);国家自然科学基金青年基金(No.51409036)。

Experiment on drag force coefficient of calcareous sand in liquid considering the effect of particle shape

WU Ye, WANG Yin, YANG Qing   

  1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2016-12-29 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41572252) and the Young Foudation of the National Natural Science of China (51409036).

摘要: 钙质砂作为南海岛礁填筑常用的岩土材料,其渗透性很大程度上决定着填筑后土体的固结和沉降。拖曳力系数是表达流体对土体颗粒表面力的参数,也是表征颗粒状土体渗透能力的一个重要参数,目前国内外对钙质砂拖曳力系数的研究十分有限。首先引入一个修正的三维参数 对钙质砂这种天然非规则颗粒材料的形状进行定量描述,然后开展一系列单个钙质砂颗粒在液体中沉降试验,利用高速相机记录颗粒沉降过程,结合图像处理技术获得颗粒沉降平衡速度Ut,进而计算出拖曳力系数CD和雷诺数Re,最后拟合出包含CD、Re及 三个参数的钙质砂拖曳力系数半经验模型。结果发现,在相同雷诺数条件下钙质砂的形状系数 越大,拖曳力系数越小。通过与其他研究结果对比发现,其表面微孔隙越发育,拖曳力系数越小的规律。该模型能够考虑不规则颗粒形状对拖曳力系数的影响,从而提高对土体渗透性预测的精度,对南海岛礁填筑工程中钙质砂固结和沉降的计算也具有重要意义。

关键词: 钙质砂, 形状系数, 拖曳力系数, 雷诺数, 沉降试验

Abstract: Calcareous sand is often used as filling material in construction of artificial islands in South China Sea. The permeability of calcareous sand has significant influence on the consolidation and settlement of soil mass. The drag force coefficient, which expresses the fluid drag force on particle surface, likewise an important parameter that characterizes the permeability of calcareous sand, is not extensively studied by researchers so far. In this study, a modified three-dimensional shape coefficient is introduced to quantitatively evaluate the shape of calcareous sand. A series of single calcareous sand particle settling tests is carried out in which a high-speed camera is employed to record the settling course and imaging technique is used to obtain the terminal equilibrium settling velocity of the sand particle. By doing so, the drag force coefficient-CD and Reynolds number-Re can be determined. The experimental results show that for the same Reynolds number, the drag force coefficient increases as the shape coefficient increases. Through a comparison with other test results, it is found that the richness of particle surface pores of calcareous sand can reduce the drag force coefficient. Finally, a semi-empirical model of the drag force coefficient for calcareous sand including CD, Re and , is obtained. This model will improve the prediction of permeability of soil mass especially with particles of irregular shapes. This improvement of drag force coefficient model has the significance on the analysis of the consolidation and settlement of foundations or artificial islands filled with calcareous sand in South China Sea.

Key words: calcareous sand, particle shape coefficient, drag force coefficient, Reynolds number, settling tests

中图分类号: 

  • TU 411
[1] 谌民, 张涛, 单华刚, 王新志, 孟庆山, 余克服, . 钙质砂压缩波速与物理性质参数关系研究[J]. 岩土力学, 2019, 40(6): 2275-2283.
[2] 曹 梦, 叶剑红, . 中国南海钙质砂蠕变-应力-时间四参数数学模型[J]. 岩土力学, 2019, 40(5): 1771-1777.
[3] 王 胤, 周令新, 杨 庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型 及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015.
[4] 魏久淇, 吕亚茹, 刘国权, 张 磊, 李 磊, . 钙质砂一维冲击响应及吸能特性试验[J]. 岩土力学, 2019, 40(1): 191-198.
[5] 范 宁, 年廷凯, 焦厚滨, 郑德凤, . 双椭流线型海底管线抵御滑坡冲击的 减灾效果与降阻机制[J]. 岩土力学, 2019, 40(1): 413-420.
[6] 马瑞男, 郭红仙, 程晓辉, 刘景儒, . 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(S2): 217-223.
[7] 熊 峰,孙 昊,姜清辉,叶祖洋,薛道锐,刘乳燕,. 粗糙岩石裂隙低速非线性渗流模型及试验验证[J]. , 2018, 39(9): 3294-3302.
[8] 陈 杨,杨 敏,魏厚振,李卫超,孟庆山,. 钙质砂中单桩轴向抗拔模型试验研究[J]. , 2018, 39(8): 2851-2857.
[9] 金宗川. 钙质砂的休止角研究与工程应用[J]. , 2018, 39(7): 2583-2590.
[10] 黄宏翔,陈育民,王建平,刘汉龙,周晓智,霍正格, . 钙质砂抗剪强度特性的环剪试验[J]. , 2018, 39(6): 2082-2088.
[11] 任玉宾,王 胤,杨 庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. , 2018, 39(2): 491-497.
[12] 叶加兵, 张家发, 邹维列, . 颗粒形状对碎石料孔隙特性影响研究[J]. 岩土力学, 2018, 39(12): 4457-4467.
[13] 王新志,谌 民,魏厚振,孟庆山,余克服,. 车辆荷载作用下钙质砂路基的动态响应试验研究[J]. , 2018, 39(11): 4093-4101.
[14] 何建乔,魏厚振,孟庆山,王新志,韦昌富,. 大位移剪切下钙质砂破碎演化特性[J]. , 2018, 39(1): 165-172.
[15] 汪轶群,洪 义,国 振,王立忠, . 南海钙质砂宏细观破碎力学特性[J]. , 2018, 39(1): 199-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏龙海,王明年,赵东平,吉艳雷. 翔安海底公路隧道陆域段变形控制措施研究[J]. , 2010, 31(2): 577 -581 .
[2] 陈运平,王思敬. 多级循环荷载下饱和岩石的弹塑性响应[J]. , 2010, 31(4): 1030 -1034 .
[3] 顾绍付,刘仰韶,刘仕顺. Asaoka法推算软基沉降偏差的修正方法探讨[J]. , 2010, 31(7): 2238 -2240 .
[4] 高树生,钱根宝,王 彬,杨作明,刘华勋. 新疆火山岩双重介质气藏供排气机理数值模拟研究[J]. , 2011, 32(1): 276 -280 .
[5] 宋勇军,胡 伟,王德胜,周军林. 基于修正剑桥模型的挤密桩挤土效应分析[J]. , 2011, 32(3): 811 -814 .
[6] 孙德安,孟德林,孙文静,刘月妙. 两种膨润土的土-水特征曲线[J]. , 2011, 32(4): 973 -0978 .
[7] 鲁 涛,王孔伟,李建林. 库水压力作用下砂岩破坏形式的探究[J]. , 2011, 32(S1): 413 -0418 .
[8] 魏明尧,王恩元,刘晓斐,王 超. 深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J]. , 2011, 32(8): 2539 -2543 .
[9] 褚福永 ,朱俊高 ,贾 华 ,安淑红. 粗粒土卸载-再加载力学特性试验研究[J]. , 2012, 33(4): 1061 -1066 .
[10] 黄茂松 ,李 波 . 往复荷载下层状地基柔性筏板-群桩共同作用分析[J]. , 2012, 33(8): 2388 -2394 .