›› 2018, Vol. 39 ›› Issue (9): 3303-3312.doi: 10.16285/j.rsm.2016.2603

• 基础理论与实验研究 • 上一篇    下一篇

刚性挡土墙后三维被动滑裂面的模型试验

杨山奇1,卢坤林1,2,史克宝1,赵瀚天1,陈一鸣1   

  1. 1. 合肥工业大学 土木与水利工程学院,安徽 合肥 230009;2. 安徽工业大学 建筑工程学院,安徽 马鞍山 243002
  • 收稿日期:2016-11-07 出版日期:2018-09-11 发布日期:2018-10-08
  • 通讯作者: 卢坤林,男,1980 年生,博士,副教授,主要从事岩土稳定理论与工程方面的研究工作。E-mail: lukunlin@hfut.edu.cn E-mail:yangshanqi2011@163.com
  • 作者简介:杨山奇,男,1991年生,硕士研究生,主要从事岩土稳定理论与工程方面的研究工作
  • 基金资助:

    安徽省青年自然科学基金(No. 1508085QE87);国家自然青年基金项目(No. 41402256)

Model tests on 3D slip surface of passive failure behind a rigid retaining wall

YANG Shan-qi1, LU Kun-lin1,2, SHI Ke-bao1, ZHAO Han-tian1, CHEN Yi-ming1   

  1. 1. School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; 2. School of Civil Engineering,Anhui University of Technology, Maanshan, Anhui 243002, China
  • Received:2016-11-07 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the Youth Foundation of the National Science of Anhui Province of China (1508085QE87) and the Youth Foundation of National Natural Science of China (41402256).

摘要: 针对无黏性土体,采用模型试验的方法,研究平移模式下刚性挡土墙后被动破坏滑裂面的空间形态。自主设计一种模型试验装置,重复开展6次试验,通过记录挡土墙后土体中预埋脆性玻璃条断裂的空间坐标,复原土体发生滑动的位置,绘制出挡土墙后滑裂面的三维形态图。试验结果表明:挡土墙后滑裂面具有明显的三维效应;挡土墙宽度内滑裂面纵向高度呈先缓慢增高后近似直线增高的曲面,初始破裂角度为9°,平均破裂角为26°,朗肯土压力理论的破裂角为28°;最大纵向破裂面长度为1.8倍挡土墙高度,与经典土压力理论的平面假定基本一致;滑裂面均有一定的横向扩展,主平面投影以初始扩散角约45°的斜线往外扩展,距离挡土墙最远处是宽度为0.7倍挡土墙宽度的水平线,斜线与水平线之间以半径为挡土墙宽度的圆弧过渡连接。研究结果为分析土体被动破坏的滑裂面空间形态提供了试验依据。

关键词: 三维滑裂面, 刚性挡土墙, 模型试验, 被动破坏

Abstract: The research about spatial form of non-cohesive soil slip surface in passive failure behind the retaining wall in translation was done by the method of model tests. A model test device was designed to carry out 6 passive failure tests for soil behind the retaining wall. The spatial coordinates of the points where the fragile glass strips embedded before break were recorded, in order to determine the location where the soil slide occurred and plot the spatial form of slip surface behind the retaining wall. The test results show that: the 3D effect of the slip surface behind the retaining wall is obvious; in the width of the retaining wall, the slip surface height in longitudinal direction slowly increases in the beginning and then increases in an approximately linear pattern. The initial fracture angle is 9° and the average fracture angle is 26° while the Rankine theory fracture angle is 28°. The maximum length of longitudinal fracture surface was 1.8 times the height of the retaining wall which is generally consistent with the plane assumption of the classical soil pressure theory. The slip surface has a certain horizontal extension, and the principal plane projection extends with initial diffusion angle of about 45°. The form which is the most distant from the retaining wall is a horizontal line with 0.7 time the width of the retaining wall, and the diagonal and horizontal lines are connected with an arc with a radius equal to retaining wall width. The results provide experimental reference for analyzing the spatial form of slip surface in passive failure.

Key words: 3D slip surface, rigid retaining wall, model test, passive failure

中图分类号: 

  • TU 470

[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[3] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[4] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[5] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[6] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[7] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[8] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[9] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[10] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[11] 宋丁豹, 蒲诃夫, 陈保国, 孟庆达, . 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41(3): 823-830.
[12] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[13] 侯公羽, 胡涛, 李子祥, 谢冰冰, 肖海林, 周天赐, . 基于分布式光纤技术的采动影响下覆岩 变形演化规律试验研究[J]. 岩土力学, 2020, 41(3): 970-979.
[14] 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.
[15] 陈贺, 张玉芳, 张新民, 魏少伟, . 高压注浆钢花管微型桩抗滑特性 足尺模型试验研究[J]. 岩土力学, 2020, 41(2): 428-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!