›› 2018, Vol. 39 ›› Issue (9): 3303-3312.doi: 10.16285/j.rsm.2016.2603

• 基础理论与实验研究 • 上一篇    下一篇

刚性挡土墙后三维被动滑裂面的模型试验

杨山奇1,卢坤林1,2,史克宝1,赵瀚天1,陈一鸣1   

  1. 1. 合肥工业大学 土木与水利工程学院,安徽 合肥 230009;2. 安徽工业大学 建筑工程学院,安徽 马鞍山 243002
  • 收稿日期:2016-11-07 出版日期:2018-09-11 发布日期:2018-10-08
  • 通讯作者: 卢坤林,男,1980 年生,博士,副教授,主要从事岩土稳定理论与工程方面的研究工作。E-mail: lukunlin@hfut.edu.cn E-mail:yangshanqi2011@163.com
  • 作者简介:杨山奇,男,1991年生,硕士研究生,主要从事岩土稳定理论与工程方面的研究工作
  • 基金资助:

    安徽省青年自然科学基金(No. 1508085QE87);国家自然青年基金项目(No. 41402256)

Model tests on 3D slip surface of passive failure behind a rigid retaining wall

YANG Shan-qi1, LU Kun-lin1,2, SHI Ke-bao1, ZHAO Han-tian1, CHEN Yi-ming1   

  1. 1. School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; 2. School of Civil Engineering,Anhui University of Technology, Maanshan, Anhui 243002, China
  • Received:2016-11-07 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the Youth Foundation of the National Science of Anhui Province of China (1508085QE87) and the Youth Foundation of National Natural Science of China (41402256).

摘要: 针对无黏性土体,采用模型试验的方法,研究平移模式下刚性挡土墙后被动破坏滑裂面的空间形态。自主设计一种模型试验装置,重复开展6次试验,通过记录挡土墙后土体中预埋脆性玻璃条断裂的空间坐标,复原土体发生滑动的位置,绘制出挡土墙后滑裂面的三维形态图。试验结果表明:挡土墙后滑裂面具有明显的三维效应;挡土墙宽度内滑裂面纵向高度呈先缓慢增高后近似直线增高的曲面,初始破裂角度为9°,平均破裂角为26°,朗肯土压力理论的破裂角为28°;最大纵向破裂面长度为1.8倍挡土墙高度,与经典土压力理论的平面假定基本一致;滑裂面均有一定的横向扩展,主平面投影以初始扩散角约45°的斜线往外扩展,距离挡土墙最远处是宽度为0.7倍挡土墙宽度的水平线,斜线与水平线之间以半径为挡土墙宽度的圆弧过渡连接。研究结果为分析土体被动破坏的滑裂面空间形态提供了试验依据。

关键词: 三维滑裂面, 刚性挡土墙, 模型试验, 被动破坏

Abstract: The research about spatial form of non-cohesive soil slip surface in passive failure behind the retaining wall in translation was done by the method of model tests. A model test device was designed to carry out 6 passive failure tests for soil behind the retaining wall. The spatial coordinates of the points where the fragile glass strips embedded before break were recorded, in order to determine the location where the soil slide occurred and plot the spatial form of slip surface behind the retaining wall. The test results show that: the 3D effect of the slip surface behind the retaining wall is obvious; in the width of the retaining wall, the slip surface height in longitudinal direction slowly increases in the beginning and then increases in an approximately linear pattern. The initial fracture angle is 9° and the average fracture angle is 26° while the Rankine theory fracture angle is 28°. The maximum length of longitudinal fracture surface was 1.8 times the height of the retaining wall which is generally consistent with the plane assumption of the classical soil pressure theory. The slip surface has a certain horizontal extension, and the principal plane projection extends with initial diffusion angle of about 45°. The form which is the most distant from the retaining wall is a horizontal line with 0.7 time the width of the retaining wall, and the diagonal and horizontal lines are connected with an arc with a radius equal to retaining wall width. The results provide experimental reference for analyzing the spatial form of slip surface in passive failure.

Key words: 3D slip surface, rigid retaining wall, model test, passive failure

中图分类号: 

  • TU 470
[1] 马显春, 罗 刚, 邓建辉, 上官力, . 陡倾滑面堆积层滑坡抗滑桩锚固深度研究[J]. 岩土力学, 2018, 39(S2): 157-168.
[2] 王之东, 黎立云, 陈 滔, 刘兵权, . 矿柱岩爆模型试验中能量释放研究[J]. 岩土力学, 2018, 39(S2): 177-185.
[3] 熊晓荣,汤 华,廖明进,尹小涛,王东英, . 隧道锚“楔形效应”的室内模型试验研究[J]. , 2018, 39(S1): 181-190.
[4] 魏焕卫,孙 川,王建强,李 瑜,刘 聪,张 伟,. 堆载下桩+地下墙水平承载组合基础模型试验研究[J]. , 2018, 39(S1): 203-210.
[5] 侯公羽,李小瑞,梁洪垚,梁金平,周蒙辉,崔永科,. 高强石膏材料配比研究及其在围岩试件(厚壁圆筒) 开挖卸荷试验中的应用[J]. , 2018, 39(S1): 159-166.
[6] 张玉芳,袁 坤,. 双锚固段新型锚索锚固性能研究及工程应用[J]. , 2018, 39(S1): 461-468.
[7] 张治国,张成平,马兵兵,宫剑飞,叶 铜,. 滑坡作用下既有隧道锚索加固的物理模型试验与数值模拟研究[J]. , 2018, 39(S1): 51-60.
[8] 汪益敏,闫 岑,于 恒,李 奇. 静载作用下土工格栅加筋拓宽路堤土中应力特征试验研究[J]. , 2018, 39(S1): 311-317.
[9] 周 昌,胡新丽,徐 楚,王 强,徐 迎. 基于电磁驱动的滑坡模型水分迁移理论及试验研究[J]. , 2018, 39(9): 3347-3354.
[10] 刘 聪,李术才,周宗青,李利平,王 康,侯福金, 秦承帅,高成路,. 复杂地层超大断面隧道施工围岩力学特征模型试验[J]. , 2018, 39(9): 3495-3504.
[11] 高 强,张强勇,张绪涛,向 文,. 深部洞室开挖卸荷分区破裂机制的动力分析[J]. , 2018, 39(9): 3181-3194.
[12] 程星磊,王建华,王哲学,. 软黏土中吸力锚循环失稳过程的模型试验[J]. , 2018, 39(9): 3285-3293.
[13] 陈 杨,杨 敏,魏厚振,李卫超,孟庆山,. 钙质砂中单桩轴向抗拔模型试验研究[J]. , 2018, 39(8): 2851-2857.
[14] 姚爱军,张剑涛,郭海峰,郭彦非. 地铁盾构隧道上方基坑开挖卸荷-加载影响研究[J]. , 2018, 39(7): 2318-2326.
[15] 陈建峰,田 丹,柳军修,. 刚/柔性组合墙面加筋土挡墙内部破坏机制[J]. , 2018, 39(7): 2353-2360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马田田 ,韦昌富 ,陈 盼 ,魏厚振 ,伊盼盼 . 非饱和土毛细滞回与变形耦合弹塑性本构模型[J]. , 2012, 33(11): 3263 -3270 .
[2] 王 伟,金 鹏,张 芳. 短龄期城市固体垃圾直剪试验及应力位移模型[J]. , 2011, 32(S1): 166 -170 .
[3] 孔 洋,朱珍德,阮怀宁, . 三向应力作用下节理岩体渗流-应力耦合特性[J]. , 2018, 39(6): 2008 -2016 .
[4] 赵 军 ,刘泉声 ,张程远 . U型地源热泵系统热-流-力学耦合模型研究[J]. , 2012, 33(S2): 1 -006 .
[5] 姜领发 ,熊署丹 ,陈善雄 ,许锡昌,. 列车荷载作用下高铁路基速度传递规律模型试验研究[J]. , 2015, 36(S1): 265 -269 .
[6] 史旦达,杨彦骋,邓益兵,刘文白,. 考虑转速比影响的砂土中螺旋挤扩钻具成孔特性宏细观模型试验[J]. , 2018, 39(6): 1981 -1990 .
[7] 叶俊能,陈 斌. 海相沉积软土动强度与孔压特性试验研究[J]. , 2011, 32(S1): 55 -60 .
[8] 储昭飞,刘保国,张 磊,史小萌,. 孔隙砂岩三轴压缩排水试验及地层失水沉降计算[J]. , 2017, 38(S1): 225 -232 .
[9] 邓高阳,肖 明,陈俊涛. 基于变分不等式的地下洞室渗流边界模拟[J]. , 2017, 38(3): 762 -768 .
[10] 张重远 ,吴满路 ,廖椿庭 . 金川三矿地应力测量及应力状态特征研究[J]. , 2013, 34(11): 3254 -3260 .