›› 2018, Vol. 39 ›› Issue (9): 3406-3414.doi: 10.16285/j.rsm.2016.2651

• 岩土工程研究 • 上一篇    下一篇

全断面隧道掘进机护盾受力监测及卡机预警

刘泉声1,2,3,彭星新1,4,5,黄 兴1,雷广峰1,4,魏 莱1,4,刘 鹤1,4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 武汉大学 土木建筑工程学院,湖北 武汉 430072;3. 武汉大学 岩土与结构工程安全湖北省重点实验室,湖北 武汉 430072;4. 中国科学院大学 北京 100049; 5. 中铁十一局集团第四工程有限公司 湖北 武汉 430073
  • 出版日期:2018-09-11 发布日期:2018-10-08
  • 通讯作者: 彭星新,男,1990年生,博士研究生,主要从事岩土工程方面的研究工作。E-mail:pengxingxin_cumt@126.com E-mail:liuqs@whrsm.ac.cn
  • 作者简介:刘泉声,男,1962年生,博士,研究员,博士生导师,主要从事岩石工程方面的教学与研究工作
  • 基金资助:

    国家重点基础研究发展计划项目(973计划)(No. 2015CB058102,No. 2014CB046904);国家自然科学基金面上项目(No. 51474205)。

Monitoring shield stress of tunnel boring machine and jamming warning

LIU Quan-sheng1,2,3, PENG Xing-xin1,4,5, HUANG Xing1, LEI Guang-feng1,4, WEI Lai1,4, LIU He1,4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. School of Civil Engineering and Architecture, Wuhan University, Wuhan, Hubei 430072, China; 3. Key Laboratory of Geotechnical and Structural Safety Engineering of Hubei Province, Wuhan University, Wuhan, Hubei 430072, China; 4. University of Chinese Academy of Science, Beijing 100049, China; 5. China Railway 11th Bureau Group 4th Engineering Co., Ltd., Wuhan, Hubei 430073, China
  • Online:2018-09-11 Published:2018-10-08
  • Supported by:

    The work was supported by the National Program on Key Basic Resaerch Project of China(973 Program)(2015CB058102, 2014CB046904) and the General Program of National Natural Science Foundation of China(51474205).

摘要: 全断面隧道掘进机(简称TBM)在穿越深部软弱地层时围岩收敛变形较大,围岩容易挤压护盾,导致TBM卡机,影响TBM正常掘进。通过分析TBM卡机灾害孕育过程,得到了预测TBM卡机的重要条件:一是围岩变形量大于预留的空间,二是额定推力不能克服摩擦阻力。为了监测实际工程TBM卡机状态,提出了一种监测护盾变形的方案以及护盾受力的计算方法,可通过监测得到的变形估算护盾的受力,进而计算出护盾受到的摩擦阻力,得到TBM卡机的状态。根据TBM受到的摩擦阻力、TBM正常掘进时所需推力和TBM额定推力之间的关系,将TBM卡机状态分为4个等级,即无卡机、轻微卡机、卡机和严重卡机,并提出了对应的处理措施。结合TBM卡机条件以及护盾受力监测方案,提出了TBM卡机灾害预警流程。在兰州水源地输水隧洞工程中应用了该监测方案和卡机灾害预警流程,应用结果表明,预测的卡机状态与TBM实际状态基本一致,说明该方法具有一定的可靠性,对指导TBM隧道施工具有重要意义。

关键词: 全断面岩石隧道掘进机, 护盾受力, 卡机预警

Abstract: The deformation of surrounding rock tunnelling by tunnel boring machine (TBM) is normally large when the tunnel passes through the deep and weak layer. The TBM shield is squeezed easily by the surrounding rock, which further results in the TBM jamming and influences the operation of TBM. By analyzing the mechanism of TBM shield jamming problems, two important conditions for forecasting TBM jamming are concluded. One is that the deformation of the surrounding rock is greater than the reserved space, and the other is that the rated thrust force cannot overcome the frictional resistance. For monitoring the jamming state of the actual TBM engineering, this study is to propose a scheme of monitoring the deformation of the TBM shield and a method of calculating the pressure of the shield. The extrusion force between the surrounding rock and the shield can be estimated, then the frictional resistance of TBM is calculated, and the state of the TBM jamming can be achieved. According to the relation between TBM frictional resistance force for excavating and the TBM rated thrust, the state of the TBM jamming can be divided into four grades: no jamming, minor jamming, jamming and severe jamming, and the corresponding treatment measures are suggested. At last, the flowchart of warning of the TBM jamming is developed by combining the monitoring scheme with the conditions of TBM jamming. The flowchart and the scheme of monitoring the deformation are successfully applied to Lanzhou water conveyance tunnel engineering, and it is found that the predicted jamming state is nearly the same as the actual state, and thus this method has certain reliability and attaches great importance to TBM tunnelling construction.

Key words: tunnel boring machine (TBM), shield stress, warning mechanism of the TBM jamming

中图分类号: 

  • TU 452
[1] 郭 亮,胡卸文,李晓昭,巫锡勇,吴礼舟,李 煜,罗 刚,马洪生,. 花岗岩断裂带原状裂隙岩水力特性试验研究[J]. , 2018, 39(11): 3937-3948.
[2] 张希巍,王 刚,蔡 明,徐 荃,. 凌海花岗岩变形特点与脆性评价[J]. , 2018, 39(10): 3515-3524.
[3] 陈 松,乔春生,叶 青,邓 斌. 基于摩尔-库仑准则的断续节理岩体复合损伤本构模型[J]. , 2018, 39(10): 3612-3622.
[4] 李术才,潘东东,许振浩,李利平,林 鹏,袁永才,高成路,路 为, . 承压型隐伏溶洞突水灾变演化过程模型试验[J]. , 2018, 39(9): 3164-3173.
[5] 左宇军,孙文吉斌,邬忠虎,许云飞,. 渗透压–应力耦合作用下页岩渗透性试验[J]. , 2018, 39(9): 3253-3260.
[6] 王凤云,钱德玲. 基于切向应变软化的深埋圆形隧道围岩弹塑性分析[J]. , 2018, 39(9): 3313-3320.
[7] 郑安兴,罗先启,. 危岩水力劈裂分析的扩展有限元法[J]. , 2018, 39(9): 3461-3468.
[8] 傅 晏,袁 文,刘新荣,缪露莉,谢文博,. 酸性干湿循环作用下砂岩强度参数劣化规律[J]. , 2018, 39(9): 3331-3339.
[9] 李小飞,孙江涛,陈卫忠,袁敬强,刘金泉,张庆艳,. 纤维硅灰水泥石强度与浆液抗冲刷特性[J]. , 2018, 39(9): 3157-3163.
[10] 李东奇,李宗利,吕从聪. 考虑裂隙附加水压的岩体断裂强度分析[J]. , 2018, 39(9): 3174-3180.
[11] 吴永胜,谭忠盛,余贤斌,喻 渝,朱 勇,. 不同加载方位角下单轴压缩千枚岩扩容特性[J]. , 2018, 39(8): 2747-2754.
[12] 李 杨,佘成学. 堆石料单粒强度尺寸效应的颗粒流模拟方法研究[J]. , 2018, 39(8): 2951-2959.
[13] 李 帅,朱万成,牛雷雷,李如飞,李少华. 动态扰动对应力松弛岩石变形行为影响的试验研究[J]. , 2018, 39(8): 2795-2804.
[14] 王斐笠,王述红,修占国. 应力波扰动下结构面的应力量化及强度表征[J]. , 2018, 39(8): 2844-2850.
[15] 杨秀荣,姜谙男,江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. , 2018, 39(S1): 167-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王淑云,鲁晓兵,赵 京,王爱兰. 粉质黏土周期荷载后的不排水强度衰化特性[J]. , 2009, 30(10): 2991 -2995 .
[2] 肖衡林,余天庆. 山区挡土墙土压力的现场试验研究[J]. , 2009, 30(12): 3771 -3775 .
[3] 张晁军,石耀霖,马 丽. 昆仑山大地震震后形变反映的地壳岩石流变特性[J]. , 2009, 30(9): 2552 -2558 .
[4] 张 敏,吴宏伟. 离心试验中的地下水模拟控制研究[J]. , 2010, 31(2): 355 -360 .
[5] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[6] 张琦伟,袁鸿鹄,王芝银,朱鸿雪,宫晓明. 考虑气象因素影响的大坝监测沉降小波分析[J]. , 2010, 31(3): 811 -814 .
[7] 邓华锋,李建林,王乐华,周济芳,邓成进. 基于强度折减法的库岸滑坡三维有限元分析[J]. , 2010, 31(5): 1604 -1608 .
[8] 孙德安,陈 波. 重塑超固结上海软土力学特性及弹塑性模拟[J]. , 2010, 31(6): 1739 -1743 .
[9] 伍国军,陈卫忠,王永刚. 基于岩体蠕变效应的锚杆应力分布及其变化规律研究[J]. , 2010, 31(S1): 150 -155 .
[10] 王瑞红,李建林,蒋昱州,陈 星,王 宇. 开挖卸荷对砂岩力学特性影响试验研究[J]. , 2010, 31(S1): 156 -162 .