岩土力学 ›› 2018, Vol. 39 ›› Issue (S2): 157-168.doi: 10.16285/j.rsm.2018.1276

• 基础理论与实验研究 • 上一篇    下一篇

陡倾滑面堆积层滑坡抗滑桩锚固深度研究

马显春1, 2, 3,罗 刚4,邓建辉1, 2,上官力3   

  1. 1. 四川大学 水力学与山区河流开发保护国家重点实验室,四川 成都 610065;2. 四川大学 水利水电学院,四川 成都 610065; 3. 中铁西南科学研究院有限公司,四川 成都 610031;4. 西南交通大学 地球科学与环境工程学院,四川 成都 611756
  • 收稿日期:2018-07-15 出版日期:2018-12-21 发布日期:2019-01-03
  • 作者简介:马显春,男,1980年生,博士,高级工程师,主要从事边坡工程与地质灾害防治方面的研究工作。
  • 基金资助:
    国家自然科学基金国际合作与交流项目(No.41661134012);国家自然科学基金青年基金项目(No.41402266);四川省交通厅科技项目(No. 2015A1-3-01)。

Study of anchorage depth of anti-sliding piles for steep-sliding accumulation landslides

MA Xian-chun1, 2, 3, LUO Gang4, DENG Jian-hui1, 2, SHANGGUAN Li3   

  1. 1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; 2. College of Water Resources & Hydropower, Sichuan University, Chengdu, Sichuan 610065, China; 3. China Railway Southwest Research Institute Co., Ltd., Chengdu, Sichuan 610031, China; 4. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
  • Received:2018-07-15 Online:2018-12-21 Published:2019-01-03
  • Supported by:
    This work was supported by the International Cooperation and Exchange Programs of the National Natural Science Foundation of China(41661134012), the National Natural Science Foundation of China(41402266), and the Sichuan Traffic Hall Science and Technology Project (2015A1-3-01).

摘要: 在陡倾滑面堆积层滑坡中抗滑桩锚固深度的计算是支挡结构设计的关键技术问题之一。以内(江)六(盘水)线K285滑坡为工程研究对象,基于相似原理,进行桩土相互作用的物理模型试验,研究3种不同锚固深度抗滑桩锚固段的受力状态和桩前滑床破坏特征。试验结果表明,(1)桩前滑体抗力呈三角形分布,滑带处抗力最大;(2)桩身最大弯矩点随着荷载增加沿桩身逐渐下降,桩前滑床发生楔形破坏,破裂深度基本与最大弯矩点对应;(3)随着锚固段长度的增加,桩前滑床楔形破坏面位置逐渐上移接近滑动面,且其破裂角逐渐减小。基于以上分析,笔者等将抗滑桩锚固段划分为无抗力锚固段、无效锚固段和有效锚固段,并采用弹性力学推导了各段长度和锚固段总长度的计算式。将研究结果用于内六线K285滑坡抗滑桩锚固深度的优化设计,在保证治理效果的基础上使得桩长减小了6 m。研究成果具有重要的工程实践价值。

关键词: 陡倾滑面堆积层滑坡, 抗滑桩, 桩土相互作用, 物理模型试验, 锚固深度, 破裂角

Abstract: As for the accumulation landslides with steep-sliding planes, the calculation of the anchorage depth of anti-sliding piles is one of the key technique problems of support structure design. Taking the K285 landslide along Neijiang-Liupanshui railway as instance, based on the similarity principle, the physical modelling tests of the interaction between anti-piles and sling mass is adopted to study the stress state and failure characteristics of sliding bed in front of the piles. The results show that: (1) The resistance force of sliding masses in front of piles is triangular distribution; and the resistance force at the sliding belt is the largest. (2) The maximum bending moment point of the piles decrease gradually along the piles with the loading increasing, and the bedding rock in front of the piles occurred wedge fracture, of which the depth corresponded to the maximum bending moment position. (3) As the length of the anchorage section increase, the position of wedge fractures of the bedding rock in front of the piles gradually move closer to the sliding surface; and its fracture angle decreased gradually. Based on the above analysis, the anchorage depth can be divided into non-resistance anchorage section, invalid anchorage section and effective anchorage section. Furthermore, the length formula of such three sections and the total anchorage depth of the anti-pile are deduced respectively. When the research results are applied to optimize the anchorage depth of the anti-slide piles of K285 landslide, the total length of the piles is reduced by 6 meters on the basis of ensuring the effectiveness of the treatment. The research has important engineering practical value.

Key words: steep-sliding accumulation landslide, anti-sliding pile, anti-sliding pile interacts with the surrounding rock and soil, physical modelling test, anchorage depth, rupture angle

中图分类号: 

  • TU473
[1] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[2] 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.
[3] 孙来宾, 肖世国, . 抗滑桩受荷段前侧有限范围地层的 地基抗力系数取值方法[J]. 岩土力学, 2020, 41(1): 278-284.
[4] 王东坡, 陈政, 何思明, 陈克坚, 刘发明, 李明清, . 泥石流冲击桥墩动力相互作用物理模型试验[J]. 岩土力学, 2019, 40(9): 3363-3372.
[5] 陈冲, 王卫, 吕华永, . 基于复合抗滑桩模型加固边坡稳定性分析[J]. 岩土力学, 2019, 40(8): 3207-3217.
[6] 魏少伟, 隋颜阳, 杨建民, . 圆形与矩形截面抗滑桩抗滑性能的模型试验研究[J]. 岩土力学, 2019, 40(3): 951-961.
[7] 张玲, 陈金海, 赵明华. 考虑土拱效应的悬臂式抗滑桩最大桩间距确定[J]. 岩土力学, 2019, 40(11): 4497-4505.
[8] 雷 达, 蒋关鲁, 孙圣杰, 戚志慧, 李安洪, . 基于振动台试验的抗滑桩加固斜坡桥基研究[J]. 岩土力学, 2019, 40(1): 127-134.
[9] 毛坚强,徐 骏,杨 磊,. 滑体段采用m法模型的抗滑桩计算方法[J]. , 2018, 39(4): 1197-1202.
[10] 储召军,石少卿,孙建虎,李 季,崔廉明,. 基于模型试验的桩间距对组合式钢管抗滑桩抗滑效果的影响分析[J]. , 2018, 39(3): 848-853.
[11] 郑 桐,刘红帅,袁晓铭,涂杰文,汤爱平,齐文浩,. 悬臂抗滑桩静、动力学性能试验的全过程[J]. , 2018, 39(3): 854-862.
[12] 陈昌富, 曾松林, 刘一俊. 考虑预应力损失桩-锚结构内力计算的加权残值法[J]. 岩土力学, 2018, 39(12): 4569-4576.
[13] 付 晓,张建经,周立荣,. 多级框架锚索和抗滑桩联合作用下边坡抗震性能的振动台试验研究[J]. , 2017, 38(2): 462-470.
[14] 尹 静,邓荣贵,王金梅,王园园,李凯甜,. 锚索抗滑桩内力计算的传递矩阵法[J]. , 2017, 38(12): 3517-3523.
[15] 董曼曼,王亮清,葛云峰,王 聪. 考虑滑床复合倾斜岩体综合地基系数的抗滑桩受力特征研究[J]. , 2017, 38(10): 3000-3008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!